当前位置: 首页 > news >正文

利用 LangChain 构建对话式 AI 应用

随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。

什么是 LangChain?

LangChain 是一个开源的 Python 和 JavaScript 库,专注于构建由大型语言模型 (LLM) 驱动的应用程序。它提供了强大的工具来管理复杂的提示链条、持久化用户上下文以及与外部数据源交互。

LangChain 的核心功能包括:

  1. Prompt 模板:灵活地管理多级提示。

  2. Chains:串联任务以实现复杂功能。

  3. Memory:支持对话上下文的记忆。

  4. 连接器:与数据库、API 和文件系统无缝集成。

接下来,我们将通过一个具体示例演示如何使用 LangChain 构建一个对话式 AI 应用。


案例构建:知识问答机器人

我们将创建一个知识问答机器人,能够根据用户的问题,实时检索相关文档并生成回答。

环境准备

  1. 安装必要库:

pip install langchain openai faiss-cpu tiktoken
  1. 获取 OpenAI 的 API 密钥:OpenAI API

  2. 准备一些示例数据,例如一个 PDF 文件,作为机器人回答问题的知识来源。

步骤 1:数据预处理

首先,我们需要将知识源(PDF 文件)转换为 LangChain 可处理的文档格式:

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter# 加载 PDF 文件
loader = PyPDFLoader("sample_document.pdf")
documents = loader.load()# 将文本拆分成小块
txt_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = txt_splitter.split_documents(documents)

步骤 2:构建知识索引

为了快速检索答案,我们可以使用 FAISS 创建向量化搜索索引:

from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings# 将文档向量化
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(split_docs, embeddings)# 保存索引以便后续使用
vectorstore.save_local("faiss_index")

步骤 3:定义对话逻辑

接下来,使用 LangChain 的 RetrievalQA 模块定义机器人如何从索引中检索并生成答案:

from langchain.chains import RetrievalQA
from langchain.llms import OpenAI# 加载已保存的索引
vectorstore = FAISS.load_local("faiss_index", embeddings)# 创建 LLM 和 QA Chain
llm = OpenAI(model="gpt-4", temperature=0.5)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever())# 测试问答逻辑
query = "什么是 LangChain?"
response = qa_chain.run(query)
print(response)

步骤 4:添加记忆功能

为了让机器人 "记住" 用户的上下文,可以结合 Memory 模块实现:

from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory# 初始化记忆模块
memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory=memory)# 模拟多轮对话
print(conversation.run("告诉我关于LangChain的用途。"))
print(conversation.run("它支持哪些集成功能?"))

步骤 5:部署 API 服务

最后,我们可以通过 FastAPI 将这个知识问答机器人部署为一个在线服务:

from fastapi import FastAPI, Requestapp = FastAPI()@app.post("/chat")
async def chat(request: Request):data = await request.json()user_input = data["input"]response = conversation.run(user_input)return {"response": response}if __name__ == "__main__":import uvicornuvicorn.run(app, host="0.0.0.0", port=8000)

关键点总结

  1. 模块化设计:LangChain 将不同功能模块化,方便开发者灵活组合。

  2. 支持扩展:可与 FAISS、OpenAI API 等外部工具无缝集成。

  3. 强大的记忆机制:提升对话式 AI 的交互体验。

通过本文示例,大家可以看到 LangChain 的实际应用场景与便捷之处。不论是构建简单的问答机器人还是复杂的对话式 AI,LangChain 都是一个值得尝试的工具。


下一步学习资源

  • LangChain 官方文档

  • OpenAI API 文档

  • FAISS 官方仓库

如果您在实践中遇到问题或有其他技术问题,欢迎在评论区留言,我们一起探讨学习!

相关文章:

利用 LangChain 构建对话式 AI 应用

随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。 什么是 La…...

力扣--34.在排序数组中查找元素的第一个和最后一个位置

题目 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target,返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

【Java回顾】Day2 正则表达式----异常处理

参考资料:菜鸟教程 https://www.runoob.com/java/java-exceptions.html 正则表达式 有一部分没看完 介绍 字符串的模式搜索、编辑或处理文本java.util.regex包,包含了pattern和mathcer类,用于处理正则表达式的匹配操作。 捕获组 把多个字符…...

【SpringBoot】当 @PathVariable 遇到 /,如何处理

1. 问题复现 在解析一个 URL 时,我们经常会使用 PathVariable 这个注解。例如我们会经常见到如下风格的代码: RestController Slf4j public class HelloWorldController {RequestMapping(path "/hi1/{name}", method RequestMethod.GET)publ…...

【FlutterDart】页面切换 PageView PageController(9 /100)

上效果: 有些不能理解官方例子里的动画为什么没有效果,有可能是我写法不对 后续如果有动画效果修复了,再更新这篇,没有动画效果,总觉得感受的丝滑效果差了很多 上代码: import package:flutter/material.…...

Backend - C# 的日志 NLog日志

目录 一、注入依赖和使用 logger 二、配置记录文件 1.安装插件 NLog 2.创建 nlog.config 配置文件 3. Programs配置日志信息 4. 设置 appsettings.json 的 LogLevel 5. 日志设定文件和日志级别的优先级 (1)常见的日志级别优先级 (2&…...

Flask是什么?深入解析 Flask 的设计与应用实践

文章目录 一、引言:从微框架到生态系统二、Flask 的核心设计理念三、Flask 的关键组件解析3.1 路由系统3.2 请求与响应对象3.3 模板引擎 Jinja23.4 扩展系统 四、Flask 的并发与性能优化4.1 默认的单线程模型4.2 提升并发性能的方法4.3 性能优化技巧 五、在企业级场…...

malloc函数和calloc函数的区别是什么?

malloc函数和calloc函数在动态内存管理中都起着分配内存空间的作用,但它们存在以下区别: 参数方面 - malloc函数:它只有一个参数,该参数表示要分配的字节数。例如, int *ptr (int *)malloc(10 * sizeof(int)); &#…...

Ansys Maxwell:3PH 变压器电感计算

各位变形金刚粉丝们,大家好: 在本博客中,我讨论了如何使用 Ansys Maxwell 计算三相变压器中的自感、互感和漏感。有多种方法和表达式可用于计算这些电感。 基本电感定义 电感的单位是亨利(H),其基本单位…...

【Go】Go文件操作详解

1. 前言 相信如果看过之前文章的朋友们一定知道我想讲什么了?灵魂三问:文件是什么?为什么需要文件?文件怎么操作?前面章节我们已经能够编写各种各样的功能代码了,但是一个很现实的问题就是我们没有任何 持…...

[react+ts] useRef获取自定义组件dom或方法声明

想用useRef获取自定义组件? 如果获取dom,直接写 const sonRef useRef<HTMLDivElement>(null); 然后子组件用forwardRef包一层,注意是HTMLDivElement,别写错, 写HTMLElement不行 const Son forwardRef<HTMLDivElement, IProps>((props, ref) > {}) 切记这…...

AI 将在今年获得“永久记忆”,2028美国会耗尽能源储备

AI的“永久记忆”时代即将来临 谷歌前CEO施密特揭示了AI技术的前景&#xff0c;他相信即将在2025年迎来一场伟大的变化。AI将实现“永久记忆”&#xff0c;改变我们与科技的互动过程。施密特将现有的AI上下文窗口比作人类的短期记忆&#xff0c;难以持久保存信息。他的设想是…...

【视频笔记】基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil【持续更新】

视频链接: 基于PyTorch从零构建多模态(视觉)大模型 by Umar Jamil 从头编写一个视觉语言模型:PloyGamma,是谷歌的一个模型 1:原始图像 2:视觉编码器(本文是viT),通过对比学习进行训练。这个对比学习最开始是CLIP,后来被谷歌改成了SigLIP 3:线性投影层 4:如何将图…...

解决 C++ 中头文件相互引用和解耦问题

在 C 中&#xff0c;当多个 .h 文件相互引用时&#xff0c;可能会导致 循环依赖 或 头文件冗余 问题&#xff0c;进而引发编译时间延迟、代码复杂度增加等问题。为了有效地解耦和组织代码&#xff0c;可以采用以下几种策略和思想&#xff1a; 1. 前向声明&#xff08;Forward …...

河马剧场(短剧)APP的邀请码怎么填写

上篇给大家说到河马剧场免费看短剧还能领5.2元3天vip会员&#xff0c;本文就说一下河马剧场河马短剧APP的邀请码怎么填写。 河马短剧APP填写邀请码分三步&#xff1a; 1、安装登陆河马短剧APP 2、点击底部导航栏中间的“福利” 3、往下划会看到“填写邀请码领3天vip” 4、…...

01:C语言的本质

C语言的本质 1、ARM架构与汇编2、局部变量初始化与空间分配2.1、局部变量的初始化2.1、局部变量数组初始化 3、全局变量/静态变量初始化化与空间分配4、堆空间 1、ARM架构与汇编 ARM简要架构如下&#xff1a;CPU&#xff0c;ARM(能读能写)&#xff0c;Flash&#xff08;能读&a…...

第1章:数据库基础

第1章&#xff1a;数据库基础 1.1 数据库概述 1.1.1 什么是数据库 数据库的定义数据库的发展历程数据库的重要性 1.1.2 关系型数据库简介 关系型数据库模型常见的关系型数据库关系型数据库的特点 1.1.3 MySQL在企业中的应用 Web应用电商平台金融系统大数据存储 1.2 数据…...

C++教程 | string类的定义和初始化方法

在C中&#xff0c;string是标准库中用于处理字符串的类&#xff0c;定义在 头文件中&#xff0c;它提供了方便、灵活的字符串操作功能。以下是一些常见的定义和初始化string对象的方法&#xff1a; 1. 默认初始化 可以直接定义一个空的string对象&#xff0c;语法如下&#x…...

React中的合成事件

合成事件与原生事件 区别&#xff1a; 1. 命名不一样&#xff0c;原生用纯小写方式&#xff0c;react用小驼峰的方式 原生&#xff1a;onclick React的&#xff1a;onClick 2. 事件处理函数的写法不一样 原生的是传入一个字符串&#xff0c;react写法传入一个回调函数 3.…...

[SMARTFORMS] 创建FORM

输入事务码SMARTFORMS进入表单开发界面&#xff0c;选中表单&#xff0c;自定义表单名称ZFS_DEMO_2025 点击"创建"按钮&#xff0c;跳转至"SAP表格设计器"页面 在"表格属性"填写表单描述、指定页格式和样式 在"表格接口"可以填写SMART…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...