用Python进行大数据处理:如何使用pandas和dask处理海量数据
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界
随着数据量的爆炸式增长,大数据处理成为现代数据科学和工程领域的核心挑战。Python作为数据分析的重要工具,其生态系统中的pandas
和dask
库为处理和分析海量数据提供了强大的支持。本文深入探讨了如何利用pandas
和dask
高效地处理大规模数据集,从数据加载、清洗、转换到分析与可视化的全流程。首先,介绍了pandas
的基本操作和优势,随后详细解析了dask
在并行计算和分布式处理方面的能力,并对比了两者在处理不同规模数据时的性能表现。通过丰富的代码示例和中文注释,本文展示了在实际项目中优化数据处理的策略,包括内存管理、计算优化和任务调度等。最后,通过实战案例,展示了pandas
与dask
在大数据环境下的协同应用,帮助读者掌握高效大数据处理的实用技巧。本文适合数据分析师、数据工程师以及对大数据处理感兴趣的开发人员参考学习。
目录
- 引言
pandas
基础- 2.1 数据结构:Series与DataFrame
- 2.2 数据加载与存储
- 2.3 数据清洗与预处理
- 2.4 数据操作与分析
dask
简介与安装- 3.1
dask
的核心概念 - 3.2 安装与配置
- 3.1
dask
与pandas
的对比- 4.1 性能对比
- 4.2 功能对比
- 4.3 适用场景
- 使用
dask
处理大数据- 5.1 分布式DataFrame
- 5.2 并行计算与任务调度
- 5.3 内存管理与优化
- 实战案例:处理海量日志数据
- 6.1 数据加载与分区
- 6.2 数据清洗与转换
- 6.3 数据分析与可视化
- 优化策略与最佳实践
- 7.1 内存优化
- 7.2 计算优化
- 7.3 任务调度优化
- 高级应用:
dask
与pandas
的协同工作- 8.1 混合使用
pandas
与dask
- 8.2 与其他大数据工具的集成
- 8.1 混合使用
- 结论
- 参考文献
引言
在当今信息化时代,数据以惊人的速度增长,传统的数据处理工具和方法在面对海量数据时往往力不从心。Python作为一种广泛应用于数据科学和工程的编程语言,凭借其简洁的语法和丰富的库生态,成为大数据处理的重要工具。其中,pandas
作为Python数据分析的基石,提供了强大的数据结构和操作功能,适用于中小规模数据集的处理。然而,随着数据规模的扩大,pandas
在性能和内存管理方面的限制逐渐显现,难以满足大数据处理的需求。
为了解决这一问题,dask
应运而生。dask
是一个灵活的并行计算库,能够扩展pandas
的功能,支持分布式数据处理,充分利用多核CPU和集群资源,实现对海量数据的高效处理。通过将大数据集切分为更小的块,dask
能够在保持pandas
接口友好的同时,提供近似无限的扩展能力。
本文旨在深入探讨如何使用pandas
和dask
进行大数据处理,从基础操作到高级应用,涵盖数据加载、清洗、转换、分析与可视化的全流程。通过详细的代码示例和中文注释,读者将全面掌握在实际项目中高效处理海量数据的策略和技巧。
pandas
基础
pandas
是Python中最受欢迎的数据分析库之一,其核心数据结构包括Series和DataFrame,提供了丰富的数据操作和分析功能。以下将介绍pandas
的基本概念和常用操作。
2.1 数据结构:Series与DataFrame
Series是一种类似于一维数组的对象,具有索引(index)和数据(values)。DataFrame则是二维的表格数据结构,类似于数据库中的表格或Excel表格,包含行索引和列索引。
import pandas as pd# 创建Series
data = [1, 2, 3, 4, 5]
series = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])
print(series)
# 输出结果
a 1
b 2
c 3
d 4
e 5
dtype: int64
# 创建DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [25, 30, 35, 40, 45],'City': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix']
}
df = pd.DataFrame(data)
print(df)
# 输出结果Name Age City
0 Alice 25 New York
1 Bob 30 Los Angeles
2 Charlie 35 Chicago
3 David 40 Houston
4 Eva 45 Phoenix
2.2 数据加载与存储
pandas
支持多种数据格式的读取与存储,如CSV、Excel、JSON、SQL等。以下是一些常见的数据加载与存储方法。
# 从CSV文件读取数据
df = pd.read_csv('data.csv')
print(df.head()) # 查看前五行# 从Excel文件读取数据
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df.head())# 将DataFrame保存为CSV文件
df.to_csv('output.csv', index=False)# 将DataFrame保存为Excel文件
df.to_excel(
相关文章:
用Python进行大数据处理:如何使用pandas和dask处理海量数据
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着数据量的爆炸式增长,大数据处理成为现代数据科学和工程领域的核心挑战。Python作为数据分析的重要工具,其生态系统中的pandas和dask库…...

机器人手眼标定
机器人手眼标定 一、机器人手眼标定1. 眼在手上标定基本原理2. 眼在手外标定基本原理 二、眼在手外标定实验三、标定精度分析 一、机器人手眼标定 要实现由图像目标点到实际物体上抓取点之间的坐标转换,就必须拥有准确的相机内外参信息。其中内参是相机内部的基本参…...

基于Springboot + vue实现的校园失物招领系统
🥂(❁◡❁)您的点赞👍➕评论📝➕收藏⭐是作者创作的最大动力🤞 💖📕🎉🔥 支持我:点赞👍收藏⭐️留言📝欢迎留言讨论 🔥🔥&…...
关于C语言初步的一些基础知识整理(2)
“本篇是对于C语言初步中一些基础知识的简单整理,内容较为琐碎,但实用” 在C语言中,格式控制符是用于指定数据输出格式的特殊字符,不同的数据类型有着其对应的格式控制符。具体的: %f 用于输出浮点型数据(…...

Linux驱动开发:深入理解I2C时序(二)
在Linux驱动开发中,I2C时序的理解和正确处理是保证I2C设备正常工作和通信的关键。I2C协议的时序特性决定了数据的有效传输和设备间的协作。因此,掌握I2C的时序细节,以及如何在Linux内核中进行时序处理,能够让开发者更好地处理设备通信问题。 本文将继续深入探讨I2C通信协议…...
逆向安卓抓包
打开Mumu网易,打开设置,打开其他,开启root权限 打开Mumu网易,找到apk安装藏航准备网.apk charles配置:proxy setting 端口9888 查看当地IP:help--->local IP address SSL Proxying Setting--->Add---->IP…...

Spring源码分析之事件机制——观察者模式(一)
目录 事件基类定义 事件监听器接口 事件发布者接口及实现 事件广播器实现 小小总结 Spring源码分析之事件机制——观察者模式(一)-CSDN博客 Spring源码分析之事件机制——观察者模式(二)-CSDN博客 Spring源码分析之事件机制…...

QT实现 端口扫描暂停和继续功能 3
上篇QT给端口扫描工程增加线程2-CSDN博客 为按钮pushButton_Stop添加clicked事件,功能为暂停扫描,并在暂停后显示继续按钮,点击继续按钮之后继续扫描 1.更新UI 添加继续按钮 点击转到槽则会自动声明 2. 更新 MainWindow.h 需要新增的部分…...
SHViT模型详解
模型简介 SHViT是一种创新的 单头视觉Transformer ,旨在优化计算效率和内存使用。它的核心设计理念围绕着消除传统视觉Transformer架构中的冗余元素,特别关注宏观和微观设计层面的问题。 SHViT采用了 1616的大跨度patchify stem 和 3阶段结构 ,这种独特的设计不仅有效减少…...

QGIS Server安装部署教程
一、QGIS 安装部署 1、下载安装QGIS链接如下图,选择最新的安装包文件QGIS-OSGeo4W-3.34.14-1.msi,下载完成后运行安装。 2、安装时选择QGIS安装路径不要带空格,此处会影响QGIS Server安装运行。 3、安装过程省略,安装完成后打…...

基于 Apache Commons Pool 实现的 gRPC 连接池管理类 GrpcChannelPool 性能分析与优化
基于 Apache Commons Pool 实现的 gRPC 连接池管理类 GrpcChannelPool 性能分析与优化 1. 输出关键信息的代码示例 日志记录方法 使用以下代码记录连接池的关键信息,帮助分析连接池的状态和性能瓶颈: import org.apache.commons.pool2.impl.GenericO…...
【C语言】
目录 第一个C语言程序题目实际应用程序要求输入描述输出描述示例 程序实现三级目录 第一个C语言程序 打开VS创建项目(视图-解决方案管理器)创建源文件(后缀.c).c会按照C的语言编译代码 c #include <stdio.h> //std-标准 //…...
标题:利用Spring Boot构建JWT刷新令牌应用
标题:利用Spring Boot构建JWT刷新令牌应用 去发现同类优质开源项目:https://gitcode.com/ 一、项目介绍 在Java开发中,Spring Boot以其简洁的配置和强大的功能深受开发者喜爱。Spring Boot Refresh Token with JWT 是一个开源示例项目,它展…...

性能测试工具的原理与架构解析
🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 在软件开发与运维领域,性能测试是确保系统稳定、高效运行的关键环节。性能测试工具作为实现这一目标的重要工具,通过模拟真实用户行为和负载…...

基于STM32的自动水满报警系统设计
目录 引言系统设计 硬件设计软件设计系统功能模块 水位检测模块报警模块自动控制模块控制算法 水位检测逻辑报警触发逻辑代码实现 水位检测模块报警控制模块自动控制逻辑系统调试与优化结论与展望 1. 引言 水满报警系统在家庭、农业、工业等领域广泛应用,通过实时…...

C语言 数组编程练习
1.将数组A的内容和数组B中的内容进行交换。(数组一样大) 2.创建一个整形数组,完成对数组的操作 实现函数Init()初始化数组全为0 实现print()打印数组的每个元素 实现reverse()函数完成数组元素的逆置 //2.创建一个整形数组,完…...

Windows 远程桌面连接Ubuntu操作 可以自由相互复制文件 粘贴板等
1.windows不用动,用IP和用户密码直接连 Ubuntu设置 详细参考:https://blog.csdn.net/qq_22370409/article/details/88914093 新建的用户需要加入sudo 使有权限。 效果 可以自由相互复制文件 粘贴板等。...

链表OJ题(一)
(一)轮转数组 . - 力扣(LeetCode) 题目描述:给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例一: 方法一:暴力求解 先用一个变量存储数组中的最后…...

C/C++中new/delete与malloc/free的区别及对象管理
C/C++中new/delete与malloc/free的区别及对象管理 在C/C++编程中,动态内存管理是一个核心且复杂的话题,其中new、delete、malloc和free是四个经常用于此目的的工具。尽管它们都涉及到内存的分配和释放,但它们在处理对象时的方式和效果却大相径庭。本文将通过示例来说明这些工…...

我的nvim的init.lua配置
nvim的配置文件路径在~/.config/nvim路径下: 一、目录如下: coc-settings.json文件是配置代码片段路径的文件init.lua配置文件的启动脚本lua/config.lua 全局配置文件lua/keymaps.lua 快捷键映射键文件lua/plugins.lua 插件的安装和配置文件…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...