UART串口数据分析
串口基础知识详细介绍:
该链接详细介绍了串并行、单双工、同异步、连接方式
https://blog.csdn.net/weixin_43386810/article/details/127156063
该文章将介绍串口数据的电平变化、波特率计算、脉宽计算以及数据传输量的计算。
捕获工具:逻辑分析仪(LA1010)
波特率:115200
数据位:8bit
校验位:无
停止位:1bit
1.空闲态: UART总线不在传输数据的时候,总线处于空闲状态,为高电平
2.起始信号 开始信号,串口通信的开始标志位
3.数据位 串口发送数据,先发低位,再发高位
4.奇/偶校验位:校验数据是否正确
奇校验:数据位和校验位1的个数为奇数 假设数据位0x55(0101 0101),校验位1 假设数据位0x51(0101 0001),校验位0
偶校验:数据位和校验位1的个数为偶数 假设数据位0x55(0101 0101),校验位0 假设数据位0x51(0101 0001),校验位1
5.停止信号:发送数据结束,回到高电平状态,校准时钟信号 一帧数据发送结束后,需要校准时钟信号,为什么需要校准时钟信号呢? 因为串口采用的是异步通信方式,双方都有自己独立的时钟源,虽然设置了双方的时钟源保持一致, 但是在发送数据时,每发送一帧数据时,都会产生误差,越往后,发送的数据,累计误差越大, 所以每发送一帧数据之后,需要校准时钟信
使用逻辑分析仪(LA1010)进行捕获和分析串口数据。
截取其中一帧数据进行分析,无数据传输时为高电平:
起始位 1bit(绿色)、高电平 --> 低电平。
数据位 8bit(白色)、高 / 低电平。
停止位 1bit(红色)、高 / 低电平位 --> 高电平。
下图为起始位、数据位、停止位的具体时间:
C2-C1:起始位 8.64us。
A2-A1:数据位中的某一位 8.61us。
B2-B1:停止位 8.62us。
可以看出起始位和停止位都是1bit。
根据数据位时间8.61us可以计算出大概波特率为:
1000 000 us / 8.61us ≈ 116144 bit/s
计算得出1s时间可传输约116144 bit 数据,和设定的115200波特率基本符合,偏差为约0.99%。
通信设备(主机和从机)之间的波特率偏差可以影响通信的稳定性和可靠性。一般来说,在串口通信中,波特率的偏差在正负5%以内是可以正常通信的。
波特率的偏差指的是实际通信速率与预期通信速率之间的差异。例如,如果主机和从机之间的波特率设定为115200 bps,那么在实际通信中,波特率可以偏差在115200 bps的正负5%范围内,即109440 bps到120960 bps之间。
超出正负5%的波特率偏差可能导致接收到的数据出现误码,通信错误率增加,甚至无法正常通信。因此,为了确保通信的稳定性,通常在主机和从机之间的波特率设置时应尽量控制在正负5%以内的偏差范围内。
一帧数据包含起始位、停止位、数据位,一共10 bit 数据,即传输一字节数据需要:
8.61us * 10bit = 86.1us
当我们传输一组33字节的数据,则需要:
33Byte * 86.1us = 2841.3us = 2.8413ms
通过标尺验证该计算方法准确性:
和计算的2.8413ms差别不大,计算正确。
相关文章:
UART串口数据分析
串口基础知识详细介绍: 该链接详细介绍了串并行、单双工、同异步、连接方式 https://blog.csdn.net/weixin_43386810/article/details/127156063 该文章将介绍串口数据的电平变化、波特率计算、脉宽计算以及数据传输量的计算。 捕获工具:逻辑分析仪&…...
NFS 组件容器化部署实战指南
文章目录 前言部署NFS服务器K8S部署NFS问题记录 前言 使用nfs-client-provisioner这个应用,利用nfs server给kubernets提供作为持久化后端,并且动态提供pv。所有节点需要安装nfs-utils组件,并且nfs服务器与kubernets worker节点都能网络连通…...
嵌入式软件C语言面试常见问题及答案解析(三)
嵌入式软件C语言面试常见问题及答案解析(三) 上一篇已经足够长了,再长也就有点不礼貌了,所以在这儿继续来总结分享那个面试中遇到的题目,文中的问题和提供的答案或者代码均代表个人的理解,如有不合理或者错误的地方,欢迎大家批评指正。 本文中题目列表 1. 编码实现子串定…...
nvm安装教程
Node Version Manager (NVM) 是一个用来管理多个 Node.js 版本的命令行工具。使用 NVM,你可以在同一台机器上轻松安装和切换不同的 Node.js 版本。以下是针对 Unix 类系统(如 Linux 和 macOS)的 NVM 安装教程: 安装 NVM 更新系统…...
单片机-定时器中断
1、相关知识 振荡周期1/12us; //振荡周期又称 S周期或时钟周期(晶振周期或外加振荡周期)。 状态周期1/6us; 机器周期1us; 指令周期1~4us; ①51单片机有两组定时器/计数器,因为既可以定时,又可以计数,故称之为定时器…...
Hadoop 实战笔记(一) -- Windows 安装 Hadoop 3.x
环境准备 安装 JAVA 1.8 Java环境搭建之JDK下载及安装下载 Hadoop 3.3.5 安装包 Hadoop 下载:https://archive.apache.org/dist/hadoop/common/ 一、JAVA JDK 环境检查 二、Hadoop(HDFS)环境搭建 1. 解压安装文件 hadoop-3.3.5.tar 2. 配置环境变量 HADOOP_HO…...
AI中的神经元与权重矩阵之间的关系;神经元连接角度看行和列的意义
AI中的神经元与权重矩阵之间的关系 目录 AI中的神经元与权重矩阵之间的关系神经元连接角度看行和列的意义AI中的神经元概念 在人工智能领域,特别是神经网络中,神经元是基本的计算单元,它是对生物神经元的一种抽象模拟。就像生物神经元接收来自其他神经元的电信号,经过处理后…...
mysql、postgresql、druid链接池踩坑记录
The last packet successfully received from the server wIs 10,010 milliseconds ago. The last packet sent successfully to the server was 10,010 milliseconds ago.### The error may exist in URL mysql 链接字符串没有 &connectTimeout600000&socketTimeout6…...
NRF24L01模块STM32通信-通信初始化
目录 前言 一、IO口初始化 二、模拟SPI的基础代码 1.一些代码的宏定义 2.起始信号 3.CS,SCK,MOSI操作 4.MISO,IRQ操作 三.中间层代码 1.字节的输入和读取 2.写操作 3.读操作 四.应用层代码 1.24L01的检测 2.在main函数进行简单验证 3.24L01宏定义的代码 总结 前…...
高比例压缩:Linux 中的压缩命令与技巧
文章目录 高比例压缩:Linux 中的压缩命令与技巧1. 压缩格式的选择2. gzip 命令示例:压缩文件示例:解压文件 3. bzip2 命令示例:压缩文件示例:解压文件 4. xz 命令示例:压缩文件示例:解压文件 5.…...
LabVIEW软件Bug的定义与修改
在LabVIEW软件开发过程中,bug(程序错误或缺陷)指的是程序中导致不符合预期行为的任何问题。Bug可能是由于编码错误、逻辑漏洞、硬件兼容性问题、系统资源限制等因素引起的。它可能会导致程序崩溃、功能无法正常执行或输出结果不符合预期。理解…...
基于Springboot + vue实现的办公用品管理系统
🥂(❁◡❁)您的点赞👍➕评论📝➕收藏⭐是作者创作的最大动力🤞 💖📕🎉🔥 支持我:点赞👍收藏⭐️留言📝欢迎留言讨论 🔥🔥&…...
B+树的原理及实现
文章目录 B树的原理及实现一、引言二、B树的特性1、结构特点2、节点类型3、阶数 三、B树的Java实现1、节点实现2、B树操作2.1、搜索2.2、插入2.3、删除2.4、遍历 3、B树的Java实现示例 四、总结 B树的原理及实现 一、引言 B树是一种基于B树的树形数据结构,它在数据…...
(四)结合代码初步理解帧缓存(Frame Buffer)概念
帧缓存(Framebuffer)是图形渲染管线中的一个非常重要的概念,它用于存储渲染过程中产生的像素数据,并最终输出到显示器上。简单来说,帧缓存就是计算机图形中的“临时画布”,它储存渲染操作生成的图像数据&am…...
python注意事项:range遍历越索引现象、列表边遍历边修改出现的问题
文章目录 前言一、range遍历越索引现象QS1:遍历range(2,2)会发生什么?不会报错,但是也不会遍历到任何内容QS1:遍历range(3,2)会发生什么?不会报错,但是也不会遍历到任何内容 二、列表边遍历边修改注意事项(Java的List系…...
【C++】模板与泛型编程(三):重载与模板
16.3 重载与模板 函数模板可以被另一个模板或一个普通分模板函数重载。与往常一样,名字相同的函数必须具有不同数量或类型的参数(这样才可以完成重载)。 如果设计模板,则函数的匹配规则与普通函数的重载有所不同,具体…...
JavaScript字符串拓展:实用方法与示例全解析
一、引言:为什么要学习 JS 字符串拓展 在前端开发的世界里,JavaScript 如同基石般支撑着网页的交互与动态呈现。而字符串作为我们日常操作中最频繁接触的数据类型之一,其原生方法在面对复杂多变的业务需求时,有时难免显得捉襟见肘…...
基于html5实现音乐录音播放动画源码
源码介绍 基于html5实现音乐录音播放动画源码是一款类似Shazam的UI,点击按钮后,会变成为一个监听按钮。旁边会有音符飞入这个监听按钮,最后转换成一个音乐播放器。 效果预览 源码获取 基于html5实现音乐录音播放动画源码...
初学stm32 --- ADC模拟/数字转换器工作原理
目录 常见的ADC类型 并联比较型工作示意图 逐次逼近型工作示意图 ADC的特性参数 STM32各系列ADC的主要特性 ADC框图简介 参考电压/模拟部分电压 输入通道( F1为例) 转换序列(F1为例) 规则组和注入组执行优先级对比 规则…...
导航技术的分类
导航技术可以根据不同的分类标准进行划分,以下是从不同角度对导航技术的分类: 一、按导航信息获取原理分类 无线电导航:利用无线电波的传播特性来测定运动体的位置、速度等导航参数。常见的无线电导航系统包括罗兰-C、奥米加、台卡等。卫星…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...





