算法题(32):三数之和
审题:
需要我们找到满足以下三个条件的所有三元组,并存在二维数组中返回
1.三个元素相加为0
2.三个元素的下标不可相同
3.三元组的元素不可相同
思路:
混乱的数据不利于进行操作,所以我们先进行排序
我们可以采取枚举的方法进行解题
首先最容易想到的就是三个for循环, 每个循环确定一个元素,遍历后在最深的第三层循环进行判断,如果满足相加为0就把对应数据存入二维数组
不过根据第二点:三个元素的下标不可相同
我们需要避免出现一个三元组中同一个位置的元素被用两次
(eg:nums[0] nums[0] nums[1])
有:
a(第一层循环的元素下标)< b(第二层循环的元素下标)< c(第三层循环的元素下标)
不过此时我们的时间复杂度有点高:O(N^3) 如何优化?
假设num1,2,3分别是三元组的值,有num1+num2+num3 = 0
我们先定住num1不变,num2越大,num3就越小,也就是说我们可以让第三层循环从n-1开始,从右向左循环,这样子可以更快找到满足条件的值
此时第二三层循环的时间复杂度就变成了O(N),我们此时可以换一种方法写后面两层循环
这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法。
总结一下,遍历方法为:第一层循环+双指针(代替第二三层循环)
解题:
(1)预处理
(2)第一层循环
第一层循环的作用是确定第一个元素值,且根据第三点我们不能有重复数据,一旦当前的值和前一个是一样的,则直接continue到下一个索引位置
(3)双指针
目标条件判断方法:由于已经确定了第一个元素的值,所以根据三者之和为0可以得知后面两个元素之和为-num1即为满足条件
遍历过程中,若满足条件就把元素插入二维数组,插入后移动双指针(因为此前移动过left和right,所以要再满足left < right的条件),移动后判断是否满足和前一个元素不同的条件,不满足就循坏更新直到满足。
若不满足条件
和大于target,要让和变小,right--
和小于target,要让和变大,left++
最后返回answer即可
15. 三数之和 - 力扣(LeetCode)
相关文章:

算法题(32):三数之和
审题: 需要我们找到满足以下三个条件的所有三元组,并存在二维数组中返回 1.三个元素相加为0 2.三个元素的下标不可相同 3.三元组的元素不可相同 思路: 混乱的数据不利于进行操作,所以我们先进行排序 我们可以采取枚举的方法进行解…...

webpack03
什么是source-map 将代码编译压缩之后,,可以通过source-map映射会原来的代码,,,在调试的时候可以准确找到原代码报错位置,,,进行修改 source-map有很多值: eval &#…...

组会 | SNN 的 BPTT(backpropagation through time)
目录 1 神经学基础知识1.1 神经元1.2 神经元之间的连接1.3 膜电位1.4 去极化与超极化 2 SNN2.1 LIF 模型2.2 BPTT 中存在的问题2.3 梯度爆炸或消失问题 前言: 本博仅为组会总结,如有谬误,请不吝指正!虽然标题为 BPTT&am…...

CDA数据分析师一级经典错题知识点总结(3)
1、SEMMA 的基本思想是从样本数据开始,通过统计分析与可视化技术,发现并转换最有价值的预测变量,根据变量进行构建模型,并检验模型的可用性和准确性。【强调探索性】 2、CRISP-DM模型Cross Industry Standard Process of Data Mi…...

django基于Python的电影推荐系统
Django 基于 Python 的电影推荐系统 一、系统概述 Django 基于 Python 的电影推荐系统是一款利用 Django 框架开发的智能化应用程序,旨在为电影爱好者提供个性化的电影推荐服务。该系统通过收集和分析用户的观影历史、评分数据、电影的属性信息(如类型…...

JVM与Java体系结构
一、前言: Java语言和JVM简介: Java是目前最为广泛的软件开发平台之一。 JVM:跨语言的平台 随着Java7的正式发布,Java虚拟机的设计者们通过JSR-292规范基本实现在Java虚拟机平台上运行非Java语言编写的程序。 Java虚拟机根本不关心运行在其内部的程序到底是使用何…...

网络授时笔记
SNTP的全称是Simple Network Time Protocol,意思是简单网络时间协议,用来从网络中获取当前的时间,也可以称为网络授时。项目中会使用LwIP SNTP模块从服务器(pool.ntp.org)获取时间 我们使用sntp例程,sntp例程路径为D:\Espressif\…...

【CSS】HTML页面定位CSS - position 属性 relative 、absolute、fixed 、sticky
目录 relative 相对定位 absolute 绝对定位 fixed 固定定位 sticky 粘性定位 position:relative 、absolute、fixed 、sticky (四选一) top:距离上面的像素 bottom:距离底部的像素 left:距离左边的像素…...

spark汇总
目录 描述运行模式1. Windows模式代码示例 2. Local模式3. Standalone模式 RDD描述特性RDD创建代码示例(并行化创建)代码示例(读取外部数据)代码示例(读取目录下的所有文件) 算子DAGSparkSQLSparkStreaming…...

【Rust自学】11.5. 在测试中使用Result<T, E>
喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 11.5.1. 测试函数返回值为Result枚举 到目前为止,测试运行失败的原因都是因为触发了panic,但可以导致测试失败的…...

Sping Boot教程之五十四:Spring Boot Kafka 生产者示例
Spring Boot Kafka 生产者示例 Spring Boot 是 Java 编程语言中最流行和使用最多的框架之一。它是一个基于微服务的框架,使用 Spring Boot 制作生产就绪的应用程序只需很少的时间。Spring Boot 可以轻松创建独立的、生产级的基于 Spring 的应用程序,您可…...

设计模式-结构型-组合模式
1. 什么是组合模式? 组合模式(Composite Pattern) 是一种结构型设计模式,它允许将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端对单个对象和组合对象的使用具有一致性。换句话说,组合模式允…...

基于Java的推箱子游戏设计与实现
基于Java的推箱子游戏设计与实现 摘 要 社会在进步,人们生活质量也在日益提高。高强度的压力也接踵而来。社会中急需出现新的有效方式来缓解人们的压力。此次设计符合了社会需求,Java推箱子游戏可以让人们在闲暇之余,体验游戏的乐趣。具有…...
Spark vs Flink分布式数据处理框架的全面对比与应用场景解析
1. 引言 1.1 什么是分布式数据处理框架 随着数据量的快速增长,传统的单机处理方式已经无法满足现代数据处理需求。分布式数据处理框架应运而生,它通过将数据分片分布到多台服务器上并行处理,提高了任务的处理速度和效率。 分布式数据处理框…...
python_excel列表单元格字符合并、填充、复制操作
读取指定sheet页,根据规则合并指定列,填充特定字符,删除多余的列,每行复制四次,最后写入新的文件中。 import pandas as pd""" 读取指定sheet页,根据规则合并指定列,填充特定字…...

nums[:]数组切片
问题:给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 使用代码如下没有办法通过测试示例,必须将最后一行代码改成 nums[:]nums[-k:]nums[:-k]切片形式: 原因:列表的切片操作 …...
【Arthas 】Can not find Arthas under local: /root/.arthas/lib 解决办法
报错 [INFO] JAVA_HOME: /opt/java/openjdk [INFO] arthas-boot version: 4.0.4 [INFO] Found existing java process, please choose one and input the serial number of the process, eg : 1. Then hit ENTER. [1]: 12 org.springframework.boot.loader.JarLauncher 1 [ER…...

录用率23%!CCF推荐-B类,Early Access即可被SCI数据库收录,中美作者占比过半
International Journal of Human-Computer Interaction(IJHCI)创刊于1989年,由泰勒-弗朗西斯(Taylor & Francis, Inc.)出版,主要发表关于交互式计算(认知和人体工程学)、数字无障…...

IP 地址与蜜罐技术
基于IP的地址的蜜罐技术是一种主动防御策略,它能够通过在网络上布置的一些看似正常没问题的IP地址来吸引恶意者的注意,将恶意者引导到预先布置好的伪装的目标之中。 如何实现蜜罐技术 当恶意攻击者在网络中四处扫描,寻找可入侵的目标时&…...

Vue_API文档
Vue API风格 Vue 的组件可以按两种不同的风格书写:选项式 API(Vue2) 和组合式 API(Vue3) 大部分的核心概念在这两种风格之间都是通用的。熟悉了一种风格以后,你也能够很快地理解另一种风格 选项式API(Opt…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
前端工具库lodash与lodash-es区别详解
lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...

MySQL 数据库深度剖析:事务、SQL 优化、索引与 Buffer Pool
在当今数据驱动的时代,数据库作为数据存储与管理的核心,其性能与可靠性至关重要。MySQL 作为一款广泛使用的开源数据库,在众多应用场景中发挥着关键作用。在这篇博客中,我将围绕 MySQL 数据库的核心知识展开,涵盖事务及…...