当前位置: 首页 > news >正文

算法题(32):三数之和

审题:

需要我们找到满足以下三个条件的所有三元组,并存在二维数组中返回

1.三个元素相加为0

2.三个元素的下标不可相同

3.三元组的元素不可相同

思路:

混乱的数据不利于进行操作,所以我们先进行排序

我们可以采取枚举的方法进行解题

首先最容易想到的就是三个for循环, 每个循环确定一个元素,遍历后在最深的第三层循环进行判断,如果满足相加为0就把对应数据存入二维数组

不过根据第二点:三个元素的下标不可相同

我们需要避免出现一个三元组中同一个位置的元素被用两次

(eg:nums[0] nums[0] nums[1])

有:

a(第一层循环的元素下标)< b(第二层循环的元素下标)< c(第三层循环的元素下标)

不过此时我们的时间复杂度有点高:O(N^3) 如何优化?

假设num1,2,3分别是三元组的值,有num1+num2+num3 = 0

我们先定住num1不变,num2越大,num3就越小,也就是说我们可以让第三层循环从n-1开始,从右向左循环,这样子可以更快找到满足条件的值

此时第二三层循环的时间复杂度就变成了O(N),我们此时可以换一种方法写后面两层循环

这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法。

总结一下,遍历方法为:第一层循环+双指针(代替第二三层循环)

解题:

(1)预处理

(2)第一层循环

第一层循环的作用是确定第一个元素值,且根据第三点我们不能有重复数据,一旦当前的值和前一个是一样的,则直接continue到下一个索引位置

(3)双指针

目标条件判断方法:由于已经确定了第一个元素的值,所以根据三者之和为0可以得知后面两个元素之和为-num1即为满足条件

遍历过程中,若满足条件就把元素插入二维数组,插入后移动双指针(因为此前移动过left和right,所以要再满足left < right的条件),移动后判断是否满足和前一个元素不同的条件,不满足就循坏更新直到满足。

若不满足条件

和大于target,要让和变小,right--

和小于target,要让和变大,left++

最后返回answer即可

15. 三数之和 - 力扣(LeetCode)

相关文章:

算法题(32):三数之和

审题&#xff1a; 需要我们找到满足以下三个条件的所有三元组&#xff0c;并存在二维数组中返回 1.三个元素相加为0 2.三个元素的下标不可相同 3.三元组的元素不可相同 思路&#xff1a; 混乱的数据不利于进行操作&#xff0c;所以我们先进行排序 我们可以采取枚举的方法进行解…...

webpack03

什么是source-map 将代码编译压缩之后&#xff0c;&#xff0c;可以通过source-map映射会原来的代码&#xff0c;&#xff0c;&#xff0c;在调试的时候可以准确找到原代码报错位置&#xff0c;&#xff0c;&#xff0c;进行修改 source-map有很多值&#xff1a; eval &#…...

组会 | SNN 的 BPTT(backpropagation through time)

目录 1 神经学基础知识1.1 神经元1.2 神经元之间的连接1.3 膜电位1.4 去极化与超极化 2 SNN2.1 LIF 模型2.2 BPTT 中存在的问题2.3 梯度爆炸或消失问题 前言&#xff1a; 本博仅为组会总结&#xff0c;如有谬误&#xff0c;请不吝指正&#xff01;虽然标题为 BPTT&am…...

CDA数据分析师一级经典错题知识点总结(3)

1、SEMMA 的基本思想是从样本数据开始&#xff0c;通过统计分析与可视化技术&#xff0c;发现并转换最有价值的预测变量&#xff0c;根据变量进行构建模型&#xff0c;并检验模型的可用性和准确性。【强调探索性】 2、CRISP-DM模型Cross Industry Standard Process of Data Mi…...

django基于Python的电影推荐系统

Django 基于 Python 的电影推荐系统 一、系统概述 Django 基于 Python 的电影推荐系统是一款利用 Django 框架开发的智能化应用程序&#xff0c;旨在为电影爱好者提供个性化的电影推荐服务。该系统通过收集和分析用户的观影历史、评分数据、电影的属性信息&#xff08;如类型…...

JVM与Java体系结构

一、前言: Java语言和JVM简介: Java是目前最为广泛的软件开发平台之一。 JVM:跨语言的平台 随着Java7的正式发布&#xff0c;Java虚拟机的设计者们通过JSR-292规范基本实现在Java虚拟机平台上运行非Java语言编写的程序。 Java虚拟机根本不关心运行在其内部的程序到底是使用何…...

网络授时笔记

SNTP的全称是Simple Network Time Protocol&#xff0c;意思是简单网络时间协议&#xff0c;用来从网络中获取当前的时间&#xff0c;也可以称为网络授时。项目中会使用LwIP SNTP模块从服务器(pool.ntp.org)获取时间 我们使用sntp例程&#xff0c;sntp例程路径为D:\Espressif\…...

【CSS】HTML页面定位CSS - position 属性 relative 、absolute、fixed 、sticky

目录 relative 相对定位 absolute 绝对定位 fixed 固定定位 sticky 粘性定位 position&#xff1a;relative 、absolute、fixed 、sticky &#xff08;四选一&#xff09; top&#xff1a;距离上面的像素 bottom&#xff1a;距离底部的像素 left&#xff1a;距离左边的像素…...

spark汇总

目录 描述运行模式1. Windows模式代码示例 2. Local模式3. Standalone模式 RDD描述特性RDD创建代码示例&#xff08;并行化创建&#xff09;代码示例&#xff08;读取外部数据&#xff09;代码示例&#xff08;读取目录下的所有文件&#xff09; 算子DAGSparkSQLSparkStreaming…...

【Rust自学】11.5. 在测试中使用Result<T, E>

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 11.5.1. 测试函数返回值为Result枚举 到目前为止&#xff0c;测试运行失败的原因都是因为触发了panic&#xff0c;但可以导致测试失败的…...

Sping Boot教程之五十四:Spring Boot Kafka 生产者示例

Spring Boot Kafka 生产者示例 Spring Boot 是 Java 编程语言中最流行和使用最多的框架之一。它是一个基于微服务的框架&#xff0c;使用 Spring Boot 制作生产就绪的应用程序只需很少的时间。Spring Boot 可以轻松创建独立的、生产级的基于 Spring 的应用程序&#xff0c;您可…...

设计模式-结构型-组合模式

1. 什么是组合模式&#xff1f; 组合模式&#xff08;Composite Pattern&#xff09; 是一种结构型设计模式&#xff0c;它允许将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端对单个对象和组合对象的使用具有一致性。换句话说&#xff0c;组合模式允…...

基于Java的推箱子游戏设计与实现

基于Java的推箱子游戏设计与实现 摘 要 社会在进步&#xff0c;人们生活质量也在日益提高。高强度的压力也接踵而来。社会中急需出现新的有效方式来缓解人们的压力。此次设计符合了社会需求&#xff0c;Java推箱子游戏可以让人们在闲暇之余&#xff0c;体验游戏的乐趣。具有…...

Spark vs Flink分布式数据处理框架的全面对比与应用场景解析

1. 引言 1.1 什么是分布式数据处理框架 随着数据量的快速增长&#xff0c;传统的单机处理方式已经无法满足现代数据处理需求。分布式数据处理框架应运而生&#xff0c;它通过将数据分片分布到多台服务器上并行处理&#xff0c;提高了任务的处理速度和效率。 分布式数据处理框…...

python_excel列表单元格字符合并、填充、复制操作

读取指定sheet页&#xff0c;根据规则合并指定列&#xff0c;填充特定字符&#xff0c;删除多余的列&#xff0c;每行复制四次&#xff0c;最后写入新的文件中。 import pandas as pd""" 读取指定sheet页&#xff0c;根据规则合并指定列&#xff0c;填充特定字…...

nums[:]数组切片

问题&#xff1a;给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 使用代码如下没有办法通过测试示例&#xff0c;必须将最后一行代码改成 nums[:]nums[-k:]nums[:-k]切片形式&#xff1a; 原因&#xff1a;列表的切片操作 …...

【Arthas 】Can not find Arthas under local: /root/.arthas/lib 解决办法

报错 [INFO] JAVA_HOME: /opt/java/openjdk [INFO] arthas-boot version: 4.0.4 [INFO] Found existing java process, please choose one and input the serial number of the process, eg : 1. Then hit ENTER. [1]: 12 org.springframework.boot.loader.JarLauncher 1 [ER…...

录用率23%!CCF推荐-B类,Early Access即可被SCI数据库收录,中美作者占比过半

International Journal of Human-Computer Interaction&#xff08;IJHCI&#xff09;创刊于1989年&#xff0c;由泰勒-弗朗西斯&#xff08;Taylor & Francis, Inc.&#xff09;出版&#xff0c;主要发表关于交互式计算&#xff08;认知和人体工程学&#xff09;、数字无障…...

IP 地址与蜜罐技术

基于IP的地址的蜜罐技术是一种主动防御策略&#xff0c;它能够通过在网络上布置的一些看似正常没问题的IP地址来吸引恶意者的注意&#xff0c;将恶意者引导到预先布置好的伪装的目标之中。 如何实现蜜罐技术 当恶意攻击者在网络中四处扫描&#xff0c;寻找可入侵的目标时&…...

Vue_API文档

Vue API风格 Vue 的组件可以按两种不同的风格书写&#xff1a;选项式 API&#xff08;Vue2&#xff09; 和组合式 API&#xff08;Vue3&#xff09; 大部分的核心概念在这两种风格之间都是通用的。熟悉了一种风格以后&#xff0c;你也能够很快地理解另一种风格 选项式API(Opt…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

MySQL 数据库深度剖析:事务、SQL 优化、索引与 Buffer Pool

在当今数据驱动的时代&#xff0c;数据库作为数据存储与管理的核心&#xff0c;其性能与可靠性至关重要。MySQL 作为一款广泛使用的开源数据库&#xff0c;在众多应用场景中发挥着关键作用。在这篇博客中&#xff0c;我将围绕 MySQL 数据库的核心知识展开&#xff0c;涵盖事务及…...