当前位置: 首页 > news >正文

深度学习第三弹:python入门与线性表示代码

一、python入门

1.熟悉基础数据结构——整型数据,浮点型数据,列表,字典,字符串;了解列表及字典的切片,插入,删除操作。

list1 = [1, 2, 3, 4, 5]
for each in list1:print(each)
print(list1[1:4]) #左闭右开
print(list1[0:4])
print(list1[2:-1])
print(list1[2:])
print(list1[:])  #列表的切片
list1 = [1, 2, 3, 4, 5, 6]
print(list1)
list1.remove(4) #列表的删除操作
print(list1)
del list1[3]
print(list1)
list1.append(7) #列表的插入
print(list1)

2.了解python中类的定义与操作,下面是一个简单的例子

class person():def __init__(self, name, age):self.name = nameself.age = agedef print_name(self):print(self.name)def print_age(self):print(self.age)

创造一个superman类对person进行继承:

class superman(person):def __init__(self, name, age):super(superman, self).__init__(name, age)
#这行代码调用了父类 person 的 __init__ 方法,并传递了 name 和 age 参数。self.fly_ = Trueself.name = nameself.age = agedef print_name(self):print(self.name)def print_age(self):print(self.age)def fly(self):if self.fly_ == True:print("飞起来!")

3.了解矩阵与张量的基本操作

#矩阵操作
list1 = [1, 2, 3, 4, 5]
print(list1)
array = np.array(list1)   #把list1转化为矩阵
print(array)#矩阵的操作
array2 = np.array(list1)
print(array2)
array3 = np.concatenate((array, array2), axis=1)#横向合并列表为矩阵
print(array3)
#矩阵切片
array = np.array(list1)
print(list1[1:3])
print(array[:, 1:3])#保留1 2列#跳着切
idx = [1,3]
print(array[:, idx])#保留1 3列
#张量操作
list1 = \[[1, 2, 3, 4, 5],[6, 7, 8, 9, 10],[11, 12, 13, 14, 15]]tensor1 = torch.tensor(list1)#将list1转化为张量
print(tensor1)x = torch.tensor(3.0)
x.requires_grad_(True)#指示PyTorch需要计算x的梯度
y = x**2
y.backward()#反向传播计算梯度

二:简单的线性表示代码

根据处理数据,定义模型,定义损失函数,优化参数的步骤,首先生成一批数据:

import torch
import matplotlib.pyplot as pltdef create_data(w, b, data_num):x = torch.normal(0, 1, (data_num, len(w))) #生成一个形状为 (data_num, len(w)) 的张量 x,其中 data_num 是数据点的数量,len(w) 是权重向量 w 的长度(即输入特征的数量),张量x 的每个元素都是服从标准正态分布的随机采样值y = torch.matmul(x, w) + b   #matmul表示矩阵相乘noise = torch.normal(0, 0.01, y.shape)# 生成一个与 y 形状相同的噪声张量 noise,其中每个元素都是从均值为0,标准差为0.01的正态分布中随机采样得到的。y += noisereturn x, ynum = 500#数据行数为500true_w = torch.tensor([8.1,2,2,4])
true_b = torch.tensor(1.1)X, Y = create_data(true_w, true_b, num)#得到用于训练的数据集X,Y,X为500*4的数据,Y为500*1的数据plt.scatter(X[:, 1], Y, 1)#利用scatter绘制散点图
plt.show()

通过以上操作我们就得到了用于训练的X,Y以及w和b的真实值。按步长为batchsize访问数据

def data_provider(data, label, batchsize):   #每次访问这个函数,就提供一批数据length = len(label)indices = list(range(length))random.shuffle(indices)for each in range(0, length, batchsize):#成批访问数据get_indices = indices[each: each+batchsize]get_data = data[get_indices]get_label = label[get_indices]yield get_data, get_label

定义loss函数为\sum \left | \widehat{y}-y\right |/N

def fun(x, w, b):#得到y的预测值pred_y = torch.matmul(x, w) + breturn pred_ydef maeLoss(pre_y, y):#定义loss函数return torch.sum(abs(pre_y-y))/len(y)

使用随机梯度下降(SGD)方法更新参数,

def sgd(paras, lr):   #随机梯度下降,更新参数with torch.no_grad(): #在更新参数时,我们不需要计算梯度。for para in paras:para -= para.grad * lrpara.grad.zero_()    #更新完参数后,它将每个参数的梯度清零(.zero_() 方法),以便在下一次参数更新前不会累积之前的梯度。

确定学习率lr与初始参数w_0,b_0,注意w_0与b_0的维度。

lr = 0.03
w_0 = torch.normal(0, 0.01, true_w.shape, requires_grad=True) #这个w需要计算梯度
b_0 = torch.tensor(0.01, requires_grad=True)

定义训练轮次与训练函数

epochs = 50for epoch in range(epochs):data_loss = 0for batch_x, batch_y in data_provider(X, Y, batchsize):pred_y = fun(batch_x, w_0, b_0)#前向传播loss = maeLoss(pred_y, batch_y)#计算损失loss.backward()#反向传播sgd([w_0, b_0], lr)#更新参数data_loss += lossprint("epoch %03d: loss: %.6f"%(epoch, data_loss))

最后数据可视化

print("真实的函数值是", true_w, true_b)
print("训练得到的参数值是", w_0, b_0)idx = 0#某一列X数据
plt.plot(X[:, idx].detach().numpy(), X[:, idx].detach().numpy()*w_0[idx].detach().numpy() + b_0.detach().numpy())
plt.scatter(X[:, idx], Y, 1)
plt.show()

完整代码如下:

import torch
import matplotlib.pyplot as plt #画图必备
#产生随机数
import randomdef create_data(w, b, data_num): #生成数据x = torch.normal(0, 1, (data_num, len(w)))y = torch.matmul(x, w) + b   #matmul表示矩阵相乘noise = torch.normal(0, 0.01, y.shape)y += noisereturn x, ynum = 500true_w = torch.tensor([8.1,2,2,4])
true_b = torch.tensor(1.1)X, Y = create_data(true_w, true_b, num)plt.scatter(X[:, 1], Y, 1)
plt.show()def data_provider(data, label, batchsize):   #每次访问这个函数,就提供一批数据length = len(label)indices = list(range(length))random.shuffle(indices)for each in range(0, length, batchsize):get_indices = indices[each: each+batchsize]get_data = data[get_indices]get_label = label[get_indices]yield get_data, get_labelbatchsize = 16def fun(x, w, b):pred_y = torch.matmul(x, w) + breturn pred_ydef maeLoss(pre_y, y):return torch.sum(abs(pre_y-y))/len(y)def sgd(paras, lr):   #随机梯度下降,更新参数with torch.no_grad(): #属于这句代码的部分,不计算梯度for para in paras:para -= para.grad * lrpara.grad.zero_()    #使用过的梯度,归0lr = 0.03
w_0 = torch.normal(0, 0.01, true_w.shape, requires_grad=True) #这个w需要计算梯度
b_0 = torch.tensor(0.01, requires_grad=True)
print(w_0, b_0)epochs = 50for epoch in range(epochs):data_loss = 0for batch_x, batch_y in data_provider(X, Y, batchsize):pred_y = fun(batch_x, w_0, b_0)loss = maeLoss(pred_y, batch_y)loss.backward()sgd([w_0, b_0], lr)data_loss += lossprint("epoch %03d: loss: %.6f"%(epoch, data_loss))print("真实的函数值是", true_w, true_b)
print("训练得到的参数值是", w_0, b_0)idx = 0
plt.plot(X[:, idx].detach().numpy(), X[:, idx].detach().numpy()*w_0[idx].detach().numpy() + b_0.detach().numpy())
plt.scatter(X[:, idx], Y, 1)
plt.show()

相关文章:

深度学习第三弹:python入门与线性表示代码

一、python入门 1.熟悉基础数据结构——整型数据,浮点型数据,列表,字典,字符串;了解列表及字典的切片,插入,删除操作。 list1 [1, 2, 3, 4, 5] for each in list1:print(each) print(list1[1…...

解决报错记录:TypeError: vars() argument must have __dict__ attribute

解决报错记录:manager_pyplot_show vars(manager_class).get(“pyplot_show“) TypeError: vars() argument must 1.问题引申 在pycharm中调用matplotlib函数批量绘制维度图时,抛出异常: manager_pyplot_show vars(manager_class).get(&…...

SpringBoot 原理篇(day14)

配置优先级 SpringBoot 中支持三种格式的配置文件: 配置文件优先级排名(从高到低): properties 配置文件yml 配置文件yaml 配置文件 注意事项 虽然 springboot 支持多种格式配置文件,但是在项目开发时,推荐…...

Vscode辅助编码AI神器continue插件

案例效果 1、安装或者更新vscode 有些版本的vscode不支持continue,最好更新到最新版,也可以直接官网下载 https://code.visualstudio.com/Download 2、安装continue插件 搜索continue,还未安装的,右下脚有个Install,点击安装即可 <...

Type-C单口便携显示器-LDR6021

Type-C单口便携显示器是一种新兴的显示设备&#xff0c;它凭借其便携性、高性能和广泛的应用场景等优势&#xff0c;正在成为市场的新宠。以下是Type-C单口便携显示器的具体运用方式&#xff1a; 一、连接与传输 1. **设备连接**&#xff1a;Type-C单口便携显示器通过Type-C接…...

青少年编程与数学 02-006 前端开发框架VUE 19课题、内置组件

青少年编程与数学 02-006 前端开发框架VUE 19课题、内置组件 一、Transition<Transition> 组件基于 CSS 的过渡效果CSS 过渡 class为过渡效果命名CSS 的 transitionCSS 的 animation自定义过渡 class同时使用 transition 和 animation深层级过渡与显式过渡时长性能考量 J…...

腾讯云AI代码助手编程挑战赛 - 使用 JavaScript 构建一个简易日历

功能简介&#xff1a; 动态年份选择&#xff1a;用户可以通过下拉框选择从 2000 年到 2050 年的任意年份。全年日历生成&#xff1a;根据用户选择的年份&#xff0c;动态生成该年份的所有 12 个月份的日历。直观的 UI 设计&#xff1a;使用 CSS 美化日历外观&#xff0c;使日历…...

Xcode 正则表达式实现查找替换

在软件开发过程中&#xff0c;查找和替换文本是一项常见的任务。正则表达式&#xff08;Regular Expressions&#xff09;是一种强大的工具&#xff0c;可以帮助我们在复杂的文本中进行精确的匹配和替换。Xcode 作为一款流行的开发工具&#xff0c;提供了对正则表达式的支持。本…...

学习flv.js

前言 flv.js一款使用纯 JavaScript 编写的 HTML5 Flash 视频 (FLV) 播放器&#xff0c;无需 Flash&#xff01;&#xff01;&#xff01;flv.js 的工作原理是将 FLV 文件流转换为 ISO BMFF&#xff08;碎片 MP4&#xff09;片段&#xff0c;然后通过Media Source Extensions&l…...

FreePBX 17 on ubuntu24 with Asterisk 20

版本配置&#xff1a; FreePBX 17&#xff08;最新&#xff09; Asterisk 20&#xff08;最新Asterisk 22&#xff0c;但是FreePBX 17最新只支持Asterisk 21&#xff0c;但是21非LTS版本&#xff0c;所以选择Asterisk 20&#xff09; PHP 8.2 Maria DB (v10.11) Node J…...

【算法】算法大纲

这篇文章介绍计算机算法的各个思维模式。 包括 计数原理、数组、树型结构、链表递归栈、查找排序、管窥算法、图论、贪心法和动态规划、以及概率论:概率分治和机器学习。没有办法逐个说明,算法本身错综复杂,不同的算法对应着不同的实用场景,也需要根据具体情况设计与调整。…...

【MySQL】SQL菜鸟教程(一)

1.常见命令 1.1 总览 命令作用SELECT从数据库中提取数据UPDATE更新数据库中的数据DELETE从数据库中删除数据INSERT INTO向数据库中插入新数据CREATE DATABASE创建新数据库ALTER DATABASE修改数据库CREATE TABLE创建新表ALTER TABLE变更数据表DROP TABLE删除表CREATE INDEX创建…...

安装本地测试安装apache-doris

一、安装前规划 我的服务器是三台麒麟服务器,2台跑不起来,这是我本地的,内存分配的也不多。 fe192.168.1.13 主数据库端口9030访问 8Gbe192.168.1.13内存4G 硬盘50be192.168.1.14内存4G 硬盘50be192.168.1.12内存4G 硬盘5013同时安装的fe和be 。 原理:192.168.1.13 服…...

【Apache Paimon】-- 13 -- 利用 paimon-flink-action 同步 mysql 表数据

利用 Paimon Schema Evolution 核心特性同步变更的 mysql 表结构和数据 1、背景信息 在Paimon 诞生以前,若 mysql/pg 等数据源的表结构发生变化时,我们有几种处理方式 (1)人工通知(比如常规的使用邮件),然后运维人员手动同步到数据仓库中 (2)使用 flink 消费 DDL bi…...

IOS HTTPS代理抓包工具使用教程

打开抓包软件 在设备列表中选择要抓包的 设备&#xff0c;然后选择功能区域中的 HTTPS代理抓包。根据弹出的提示按照配置文件和设置手机代理。如果是本机则会自动配置&#xff0c;只需要按照提醒操作即可。 iOS 抓包准备 通过 USB 将 iOS 设备连接到电脑&#xff0c;设备需解…...

在 Ubuntu 22.04 上从 Wayland 切换到 X11的详细步骤

在 Ubuntu 22.04 上从 Wayland 切换到 X11&#xff0c;步骤其实很简单&#xff0c;主要是在登录界面进行选择。以下是详细的步骤&#xff1a; 步骤 1&#xff1a;退出当前会话 首先&#xff0c;点击屏幕右上角的用户菜单&#xff0c;选择 注销 或 退出&#xff0c;以退出当前…...

【Linux】4.Linux常见指令以及权限理解(2)

文章目录 3. Linux指令3.1 ls指令和rm指令补充3.2 man指令&#xff08;重要&#xff09;3.3cp指令&#xff08;重要&#xff09;输出重定向3.3.1ubuntu20.04如何安装tree 3.4 mv指令&#xff08;重要&#xff09;mv指令更改文件名mv指令更改目录名 如何看待指令指令的重命名3.5…...

ffmpeg aac s16 encode_audio.c

用ffmpeg库时&#xff0c;用代码对pcm内容采用aac编码进行压缩&#xff0c;出现如下错误。 [aac 000002bc5edc6e40] Format aac detected only with low score of 1, misdetection possible! [aac 000002bc5edc8140] Error decoding AAC frame header. [aac 000002bc5edc81…...

vue3监听器

1.侦听数据源类型 watch 的第一个参数可以是不同形式的“数据源”&#xff1a;它可以是一个 ref (包括计算属性)、一个响应式对象、一个 getter 函数、或多个数据源组成的数组 const x ref(0) const y ref(0)// 单个 ref watch(x, (newX) > {console.log(x is ${newX}) …...

03-51单片机定时器和串口通信

一、51单片机定时器 1.定时器介绍 1.1为什么要使用定时器 在前面的学习中&#xff0c;用到了 Delay 函数延时&#xff0c;这里学习定时器以后&#xff0c;就可以通过定时器来完成&#xff0c;当然定时器的功能远不止这些&#xff1a; 51 单片机的定时器既可以定时&#xff…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...