二、模型训练与优化(4):模型优化-实操
下面我将以 MNIST 手写数字识别模型为例,从 剪枝 (Pruning) 和 量化 (Quantization) 两个常用方法出发,提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境,示范如何先训练一个基础模型,然后对其进行剪枝和量化,最后验证优化后的模型性能。
目录
- 整体流程概览
- 模型剪枝 (Pruning)
- 安装依赖库
- 修改训练脚本实现剪枝
- 如何运行剪枝脚本
- 检查与验证剪枝后模型
- 模型量化 (Quantization)
- 原理与应用场景
- 在脚本中添加量化步骤
- 运行量化脚本
- 验证量化后模型
- 常见问题与建议
- 总结
1. 整体流程概览
在之前博客中已经可以训练一个基础 MNIST 模型(train_mnist.py
)并成功获得 mnist_model.h5
的前提下,通常会按照以下顺序进行优化:
在模型训练好后,可以在mnist_project文件夹下找到mnist_model.h5,如下:
- 剪枝 (Pruning):减小模型大小、去除不重要的权重,生成
pruned_mnist_model.h5
。 - (可选)量化 (Quantization):将浮点模型转化为 INT8 等低比特模型,大幅减小模型体积,并提升推理速度,生成
mnist_model_quant.tflite
。
在此过程中,我们需要:
- 修改已有脚本或新增脚本来执行剪枝和量化的操作。
- 确保虚拟环境已安装必要库(
tensorflow-model-optimization
、tensorflow-lite
等)。 - 反复验证模型的大小、推理速度、准确率,找到最适合部署需求的平衡点。
2. 模型剪枝 (Pruning)
2.1 安装依赖库
- TensorFlow Model Optimization Toolkit:其中包含
tfmot.sparsity.keras
模块,可用于剪枝、量化感知训练等。
在激活的虚拟环境(tf_env
等)下,输入:
pip install tensorflow-model-optimization
如果已经安装过,可以跳过此步骤;若版本较旧,建议 pip install --upgrade tensorflow-model-optimization
。
2.2 修改训练脚本实现剪枝
这里给出的示例代码可放在一个新的脚本(如 prune_mnist.py
),或者在原 train_mnist.py
中替换。示例如下:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow_model_optimization as tfmotdef main():# 1. 加载 MNIST 数据集(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()# 2. 数据预处理x_train = x_train.astype("float32") / 255.0x_test = x_test.astype("float32") / 255.0x_train = x_train.reshape(-1, 28 * 28)x_test = x_test.reshape(-1, 28 * 28)# 3. 定义剪枝参数pruning_params = {# PolynomialDecay 让剪枝率从 initial_sparsity 到 final_sparsity 逐渐增加'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.0, # 初始剪枝率 (0%)final_sparsity=0.5, # 最终剪枝率 (50%)begin_step=0, # 剪枝开始 stepend_step=np.ceil(len(x_train) / 64).astype(np.int32) * 5# end_step: 这里相当于 epochs * (训练集样本数 / batch_size))}# 4. 构建剪枝后的模型# - 先定义一个包含1~2层的网络# - 使用 prune_low_magnitude 对最后一层进行剪枝封装model = tf.keras.models.Sequential([tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),tfmot.sparsity.keras.prune_low_magnitude(tf.keras.layers.Dense(10, activation='softmax'),**pruning_params)])# 5. 编译模型model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 6. 设置剪枝回调# - UpdatePruningStep:在每个批次/epoch后更新剪枝进度# - PruningSummaries:可选,将剪枝信息写入到指定 log_dir,配合 TensorBoard 查看callbacks = [tfmot.sparsity.keras.UpdatePruningStep(),tfmot.sparsity.keras.PruningSummaries(log_dir='logs')]# 7. 训练模型# - epochs=5 可以根据需要加大或减少history = model.fit(x_train, y_train,epochs=5,batch_size=64,validation_split=0.1,callbacks=callbacks)# 8. 模型评估test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)print(f"\n测试集上的准确率: {test_acc:.4f}")# 9. 保存剪枝后的模型# - 先使用 strip_pruning 去除剪枝包装器,得到最终“瘦身”模型final_model = tfmot.sparsity.keras.strip_pruning(model)final_model.save("pruned_mnist_model.h5")# 10. 可视化训练过程plot_history(history)def plot_history(history):"""可视化训练曲线"""acc = history.history['accuracy']val_acc = history.history['val_accuracy']loss = history.history['loss']val_loss = history.history['val_loss']epochs_range = range(len(acc))plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='训练准确率')plt.plot(epochs_range, val_acc, label='验证准确率')plt.legend(loc='lower right')plt.title('训练和验证准确率')# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs_range, loss, label='训练损失')plt.plot(epochs_range, val_loss, label='验证损失')plt.legend(loc='upper right')plt.title('训练和验证损失')plt.show()if __name__ == "__main__":main()
代码要点:
tfmot.sparsity.keras.PolynomialDecay
:定义从 0% 到 50% 的剪枝率逐渐增加的策略。prune_low_magnitude(...)
:对目标层进行剪枝包装。可以只对某些关键层做剪枝,也可对网络所有层做封装。strip_pruning(...)
:剪枝训练完后,需要去掉剪枝相关的“假”节点,才能得到真正稀疏的权重以减小体积。
2.3 如何运行剪枝脚本
- 确保已经训练过一个基础模型(可选,如果想微调原模型);或者像示例这样直接在脚本里构建一个新的网络。
- 打开 Anaconda Prompt(或终端),激活虚拟环境:
conda activate tf_env
- 导航到脚本所在目录:
cd C:\Users\FCZ\Desktop\Projects\mnist_project
- 运行脚本:
python prune_mnist.py
训练过程结束后,会打印出测试集准确率,并在目录下生成 pruned_mnist_model.h5
。
2.4 检查与验证剪枝后模型
- 模型体积:相较原始不剪枝模型,
pruned_mnist_model.h5
通常会更小,但因 HDF5 格式本身包含稀疏权重的表示方式,实际文件大小并不总是线性减少。关键是剪枝会让权重矩阵变得稀疏,后续可以配合特定框架(如 STM32Cube.AI)进行再处理。 - 准确率:可能略有降低,一般会在 0.97~0.98 附近。若下降过多,可调整
final_sparsity
(如从 0.5 改为 0.3) 或增加微调 epochs。 - 后续可做量化:将剪枝后模型再进行量化,可实现进一步体积和推理速度的提升。
3. 模型量化 (Quantization)
3.1 原理与应用场景
- 量化:把模型中的权重(和激活)从 float32 转化成 int8、float16 等低位格式,典型方式是使用 TensorFlow Lite 的离线量化。
- 适用场景:需要在嵌入式或移动端部署,同时希望降低模型大小和加速推理。
- 代价:可能带来少量精度损失。如果需要减小精度损失,可用量化感知训练(QAT)。
3.2 在脚本中添加量化步骤
当我们在 train_mnist.py
训练完基础模型后,在prune_mnist.py完成剪枝操作后,接下来完成量化操作,编写
单独脚本 quantize_mnist.py
:将 训练、剪枝、量化 三个步骤整合在一起
"""
quantize_mnist.py
-----------------
在同一个脚本中完成:
1. MNIST 基础模型训练
2. 剪枝 (Pruning)
3. 量化 (Quantization)依赖:- tensorflow>=2.5- tensorflow-model-optimization- numpy, matplotlib (可选, 用于可视化)
"""import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow_model_optimization as tfmotdef load_mnist_data():"""加载 MNIST 数据,并做基本预处理。"""(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()x_train = x_train.astype("float32") / 255.0x_test = x_test.astype("float32") / 255.0# 展开 28x28 -> 784x_train = x_train.reshape(-1, 28 * 28)x_test = x_test.reshape(-1, 28 * 28)return (x_train, y_train), (x_test, y_test)def create_base_model():"""构建一个简单的全连接 MNIST 模型。"""model = tf.keras.models.Sequential([tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),tf.keras.layers.Dense(10, activation='softmax')])return modeldef plot_history(history, title_prefix=""):"""可视化训练曲线"""acc = history.history['accuracy']val_acc = history.history['val_accuracy']loss = history.history['loss']val_loss = history.history['val_loss']epochs_range = range(len(acc))plt.figure(figsize=(12, 4))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='训练准确率')plt.plot(epochs_range, val_acc, label='验证准确率')plt.legend(loc='lower right')plt.title(f'{title_prefix} 训练和验证准确率')# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs_range, loss, label='训练损失')plt.plot(epochs_range, val_loss, label='验证损失')plt.legend(loc='upper right')plt.title(f'{title_prefix} 训练和验证损失')plt.show()def main():# =======================================# 1. 数据准备# =======================================(x_train, y_train), (x_test, y_test) = load_mnist_data()# =======================================# 2. 训练基线模型# =======================================print("\n--- 步骤1: 训练基线模型 ---")base_model = create_base_model()base_model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])history_base = base_model.fit(x_train, y_train,epochs=5,batch_size=64,validation_split=0.1)test_loss_base, test_acc_base = base_model.evaluate(x_test, y_test, verbose=0)print(f"基线模型测试集准确率: {test_acc_base:.4f}")# 可视化基线模型训练过程plot_history(history_base, title_prefix="基线模型")# 保存基线模型base_model.save("mnist_model.h5")# =======================================# 3. 剪枝 (Pruning)# =======================================print("\n--- 步骤2: 剪枝模型 ---")# 定义剪枝参数:从0%渐增到50%的剪枝率pruning_params = {'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.0,final_sparsity=0.5,begin_step=0,end_step=np.ceil(len(x_train) / 64).astype(np.int32) * 5)}# 用之前的 base_model 权重来构造可剪枝模型# 也可直接对 base_model 做 prune_low_magnitude,但这里分开写更清晰pruned_model = tf.keras.models.Sequential([tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),tfmot.sparsity.keras.prune_low_magnitude(tf.keras.layers.Dense(10, activation='softmax'),**pruning_params)])# 把 base_model 的第一层权重复制到 pruned_model 第1层pruned_model.layers[0].set_weights(base_model.layers[0].get_weights())# 编译可剪枝模型pruned_model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 设置回调:更新剪枝步数 + 记录日志callbacks = [tfmot.sparsity.keras.UpdatePruningStep(),tfmot.sparsity.keras.PruningSummaries(log_dir='logs')]history_pruned = pruned_model.fit(x_train, y_train,epochs=3, # 可以适当增加训练轮数batch_size=64,validation_split=0.1,callbacks=callbacks)test_loss_pruned, test_acc_pruned = pruned_model.evaluate(x_test, y_test, verbose=0)print(f"剪枝后模型测试集准确率: {test_acc_pruned:.4f}")plot_history(history_pruned, title_prefix="剪枝模型")# strip_pruning: 得到真正稀疏的权重final_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_model)final_pruned_model.save("pruned_mnist_model.h5")# =======================================# 4. 量化 (Quantization)# =======================================print("\n--- 步骤3: 量化剪枝后模型 (PTQ) ---")# 您也可以对 base_model 做量化,这里演示对 剪枝后的模型 做量化converter = tf.lite.TFLiteConverter.from_keras_model(final_pruned_model)converter.optimizations = [tf.lite.Optimize.DEFAULT]# 如需要 representative_dataset 来校准,可添加:# converter.representative_dataset = ...# 转换为 TFLitetflite_quant_model = converter.convert()# 保存量化后的 TFLite 文件with open('pruned_mnist_model_quant.tflite', 'wb') as f:f.write(tflite_quant_model)print("量化后的剪枝模型已保存: pruned_mnist_model_quant.tflite")# 如有需要,可使用 tflite interpreter 测试推理# 这里仅演示到生成 TFLite 文件即可if __name__ == "__main__":main()
注意:
- 量化完成后,记得在 PC 或嵌入式设备上进行推理测试,查看最终精度。
3.3 运行量化脚本
- 依旧在 Anaconda Prompt 中激活环境:
conda activate tf_env
- 导航到脚本所在目录
- 执行:
python quantize_mnist.py
- 观察输出:若无异常,脚本会提示
"量化后的模型已保存为 mnist_model_quant.tflite"
。
- 训练基线模型:训练 5 轮得到
mnist_model.h5
。 - 剪枝模型:基于基线模型的权重进行剪枝,训练 3 轮得到
pruned_mnist_model.h5
。 - 量化模型:将剪枝后的模型转换为
.tflite
格式,并保存为pruned_mnist_model_quant.tflite
。 -
结果文件
-
mnist_model.h5
:基线模型(未剪枝、未量化)。pruned_mnist_model.h5
:剪枝后且 strip_pruning 的 Keras 模型。pruned_mnist_model_quant.tflite
:剪枝后再量化的 TFLite 模型,通常体积最小,速度也更快(具体依赖硬件支持)。
总结
接下来对优化后的模型进行验证,验证方法:
- 在脚本运行过程中会输出基线模型和剪枝模型的测试集准确率。
.tflite
文件可以用 TFLite Interpreter 或 STM32Cube.AI 进行推理测试,查看最终精度和性能。
相关文章:

二、模型训练与优化(4):模型优化-实操
下面我将以 MNIST 手写数字识别模型为例,从 剪枝 (Pruning) 和 量化 (Quantization) 两个常用方法出发,提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境,示范如何先训练一个基础模型,然后对其进行剪枝和…...
3D可视化产品定制,应用于哪些行业领域?
3D可视化定制服务已广泛渗透至众多行业领域,包括汽车、家居、时尚鞋服、珠宝配饰以及数码电器等: 汽车行业: 借助Web全景技术与3D模型,我们高保真地再现了汽车外观,为用户带来沉浸式的车型浏览体验。用户可在展示界面自…...

Avalonia 入门笔记(零):概述
Avalonia 是一个基于 .NET 和 Skia 的开源、跨平台 UI 框架,支持 Windows、Linux、macOS、iOS、Android 和 WebAssembly。Skia 是一个基于 C 的开源 2D 渲染引擎,Avalonia 通过 Skia 自绘 UI 控件,保证在全平台具有一致的观感 基于 .NET 的跨…...

Unity TextMesh Pro入门
概述 TextMesh Pro是Unity提供的一组工具,用于创建2D和3D文本。与Unity的UI文本和Text Mesh系统相比,TextMesh Pro提供了更好的文本格式控制和布局管理功能。 本文介绍了TMP_Text组件和Tmp字体资产(如何创建字体资产和如何解决缺字问题),还有一些高级功…...

[论文阅读] (35)TIFS24 MEGR-APT:基于攻击表示学习的高效内存APT猎杀系统
《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期…...

12 USART串口通讯
1 串口物理层 两个设备的“DB9接口”之间通过串口信号建立连接,串口信号线中使用“RS232标准”传输数据信号。由于RS232电平标准的信号不能直接被控制器直接识别,所以这些信号会经过“电平转换芯片”转换成控制器能识别的“TTL校准”的电平信号ÿ…...

CF 368A.Sereja and Coat Rack(Java实现)
问题分析 简而言之,小明要邀请m个绅士到家,家里有n个挂衣钩,一个挂衣钩要支付i元,如果挂衣钩不够了就要给每个绅士赔d元 思路分析 所以思路就很清楚了,获取n,d,m的值,并用数组存放每…...

清华大学、字节跳动等单位联合发布最新视觉语言动作模型RoboVLMs
近年来,视觉语言基础模型(Vision Language Models, VLMs)大放异彩,在多模态理解和推理上展现出了超强能力。现在,更加酷炫的视觉语言动作模型(Vision-Language-Action Models, VLAs)来了&#x…...
网络安全、Web安全、渗透测试之笔经面经总结
本篇文章涉及的知识点有如下几方面: 1.什么是WebShell? 2.什么是网络钓鱼? 3.你获取网络安全知识途径有哪些? 4.什么是CC攻击? 5.Web服务器被入侵后,怎样进行排查? 6.dll文件是什么意思,有什么…...

.NET Core NPOI 导出图片到Excel指定单元格并自适应宽度
NPOI:支持xlsx,.xls,版本>2.5.3 XLS:HSSFWorkbook,主要前缀HSS, XLSX:XSSFWorkbook,主要前缀XSS,using NPOI.XSSF.UserModel; 1、导出Excel添加图片效果࿰…...
python bs4 selenium 查找a href=javascript:();的实际点击事件和url
在使用 BeautifulSoup 和 Selenium 时,处理 href"javascript:;" 的链接需要一些额外的步骤,因为这些链接不直接指向一个 URL,而是通过 JavaScript 代码来执行某些操作。这可能包括导航到另一个页面、触发模态窗口、显示/隐藏内容等…...

三 BH1750 光感驱动调试1
一 扫描设备 查看手册 BH1750 光感模块 寄存器地址为 0x23 官方手册 : http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1750fvi-e.pdf su 然后用 i2cdetect 扫描设备: 拨,插 对比, 探测设备挂载在 /dev/i2c-5 上, 从设备地址为 0x23 二 …...

UE材质节点Fresnel
Fresnel节点 ExponentIn 控制边缘透明度 BaseReflectFractionIn 控制中心透明度...
linux的大内核锁与顺序锁
大内核锁 Linux大内核锁(Big Kernel Lock,BKL)是Linux内核中的一种锁机制,用于保护内核资源,以下是关于它的详细介绍: 概念与作用 大内核锁是一种全局的互斥锁,在同一时刻只允许一个进程访问…...

用户注册模块用户校验(头条项目-05)
1 用户注册后端逻辑 1.1 接收参数 username request.POST.get(username) password request.POST.get(password) phone request.POST.get(phone) 1.2 校验参数 前端校验过的后端也要校验,后端的校验和前端的校验是⼀致的 # 判断参数是否⻬全 # 判断⽤户名是否…...

面向对象的基本概念
本篇,来介绍面向对象的基本概念。 1 面向过程与面向对象 面向过程与面向对象,是两种不同的编程思想。 1.1 面向过程 面向过程的思路,是按照问题的解决步骤,将程序分解为一个个具体的函数或过程,然后依次调用这些函数来实现程序的功能。 面向对象的程序设计,程序的执行…...

深度学习每周学习总结R4(LSTM-实现糖尿病探索与预测)
🍨 本文为🔗365天深度学习训练营 中的学习记录博客R6中的内容,为了便于自己整理总结起名为R4🍖 原作者:K同学啊 | 接辅导、项目定制 目录 0. 总结1. LSTM介绍LSTM的基本组成部分如何理解与应用LSTM 2. 数据预处理3. 数…...
如何使用 PHP 操作亚马逊 S3 对象云存储
以下是使用PHP与亚马逊S3对象云存储(也有其他支持S3协议的云存储服务,原理类似)进行交互的常见文档接口使用示例,涵盖了基本的操作如上传文件、下载文件、删除文件、列举文件等内容。 ### 前提条件 1. 首先,你需要获取…...
26_Redis RDB持久化
从这个模块开始带领大家来学习Redis分布式缓存的相关内容,主要学习目标见下: 数据丢失问题:实现Redis数据持久化(RDB和AOF)并发能力问题:搭建Redis主从集群,实现读写分离故障恢复问题:利用Redis哨兵模式,实现健康检测和自动恢复存储能力问题:搭建Redis分片集群,利用…...
标准Android开发jdk和gradle和gradle AGP和AndroidStudio对应版本
还在为用什么gradle版本烦恼吗?编译不过IDE不开始下载第三方库吗?是时候匹配下你的gradle编译版本了: 1.Gradle 各版本支持的 JDK 版本范围如下: Gradle 版本最低支持 JDK最高支持 JDK7.0 - 7.6JDK 8JDK 178.0 - 8.2JDK 11JDK 1…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
湖北理元理律师事务所:债务清偿方案中的法律技术革新
文/金融法律研究组 当前债务服务市场存在结构性矛盾:债权人追求快速回款,债务人需要喘息空间。湖北理元理律师事务所通过创新法律技术,在《企业破产法》《民法典》框架下构建梯度清偿模型,实现多方利益平衡。 一、个人债务优化的…...
Qt Quick Dialogs模块功能及架构
Qt Quick Dialogs 是 Qt Quick 的一个附加模块,提供了一套用于创建和使用系统对话框的 QML 类型。在 Qt 6.0 中,这个模块经过了重构和增强。 一、主要功能和特点 1. 对话框类型 Qt Quick Dialogs 在 Qt 6.0 中提供了以下标准对话框类型: …...

Pycharm的终端无法使用Anaconda命令行问题详细解决教程
很多初学者在Windows系统上安装了Anaconda后,在PyCharm终端中运行Conda命令时,会遇到以下错误: conda : 无法将“conda”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。 请检查名称的拼写,如果包括路径,请确保…...
2. Web网络基础 - 协议端口
深入解析协议端口与netstat命令:网络工程师的实战指南 在网络通信中,协议端口是服务访问的门户。本文将全面解析端口概念,并通过netstat命令实战演示如何监控网络连接状态。 一、协议端口核心知识解析 1. 端口号的本质与分类 端口范围类型说…...

Linux系统的CentOS7发行版安装MySQL80
文章目录 前言Linux命令行内的”应用商店”安装CentOS的安装软件的yum命令安装MySQL1. 配置yum仓库2. 使用yum安装MySQL3. 安装完成后,启动MySQL并配置开机自启动4. 检查MySQL的运行状态 MySQL的配置1. 获取MySQL的初始密码2. 登录MySQL数据库系统3. 修改root密码4.…...