当前位置: 首页 > news >正文

相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型

在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化,两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的:乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的乘积。加性尺度上的相互作用意味着两次暴露的综合效应大于(或小于)两次暴露单独效应的总和。

在这里插入图片描述

目前在大量文章中只报道了乘法交互效应,而加法交互效应报道得较少。有文献表明,单单只用乘法交互效应低估了疾病协同的危险性,从而低估了发病率。

在这里插入图片描述

柳叶刀杂志:没有相乘效应并不代表没有相加效应。相乘模型,也要评估相加交互作用。

今天给大家演示一下,scitable包的scitb6函数,这是一个专门用于相加交互效应模型的函数,下面我给大家演示一下。
先导入数据和R包

setwd("E:/公众号文章2025年/一键相加交互函数")
library(interactionR)
bc<-read.csv("E:/r/test/jiaohu1.csv",sep=',',header=TRUE)

在这里插入图片描述

这个是interactionR包的示例数据,大家想必最关心的是可靠性的问题,先用两个权威的R包来生成结果,等会比较一下

model.glm <- glm(oc ~ alc * smk,family = binomial(link = "logit"),data = bc)
out<-interactionR(model.glm, exposure_names = c("alc", "smk"), ci.type = "mover", ci.level = 0.95, em = F, recode = F)

在这里插入图片描述
Reri:3.74,ap:0.41, si:1.87. 还是这个模型,咱们换个R包来做看,

library(epiR)
epi.interaction(model = model.glm, param = "product", coef = c(2,3,4), conf.level = 0.95)

在这里插入图片描述

我们可以看到,两个R包的值都一样,但是可信区间不同,下面咱们使用scitb6函数来试一下,一句话代码出结果

library(scitable)
out<-scitb6(data=bc,x="alc",y="oc",Interaction="smk",cov = NULL,family="glm")

在这里插入图片描述
和上面2个R包基本一致,所以可靠性是绝对没有问题,其实虽然相加模型没有相乘好理解,但是毕竟公式摆在那里,基本不会算错的。

好的。下面咱们正式进入今天的主题,scitable包支持逻辑回归,cox回归,广义线性混合模型(glmm),广义估计方程(gee)的相加交互模型计算,下面我一一演示一下。

演示之前先说个题外话,我目前收集到2个文章模板觉得还行,结果是朝着这两个模板设计的
一个是下面这个文章:

在这里插入图片描述
在这里插入图片描述
另一个是文章:

在这里插入图片描述
在这里插入图片描述
怎么看这个结果,文字不怎么好说,专门在下面视频再说

正式开始,先导入我的一个不孕症数据

bc<-read.csv("E:/r/test/buyunzheng.csv",sep=',',header=TRUE)

在这里插入图片描述

数据有8个指标,最后两个是PSM匹配结果,我们不用理他,其余六个为:
Education:教育程度,age:年龄,parity产次,induced:人流次数,case:是否不孕,这是结局指标,spontaneous:自然流产次数。
有一些变量是分类变量,我们需要把它转换一下,我人为把年龄分成3段,好方便演示

bc$fage<-cut(bc$age,breaks = 3,labels = c(0,1,2))#平均分为3个区间,命名为0,1,2  可以看成低龄、中龄、高龄
##转分类变量成因子
bc$education<-ifelse(bc$education=="0-5yrs",0,ifelse(bc$education=="6-11yrs",1,2))
bc$spontaneous<-as.factor(bc$spontaneous)    # 可以看成没有流产、流产1次,流产2此以上
bc$case<-as.factor(bc$case)
bc$induced<-as.factor(bc$induced)
bc$education<-as.factor(bc$education)
bc$fage<-as.factor(bc$fage)

设置一下分层变量和协变量,方法和scitb5几乎一样,如果你用过前面的,可以轻松上手

cov1<-c("parity")
Interaction<-c("spontaneous")

一键生成表格,有两种格式,先说第一种

out<-scitb6(data=bc,x="fage",y="case",Interaction=Interaction,cov = cov1,family="glm")

在这里插入图片描述
看到这个你可能会说,这是什么呀,我知道你很懵逼,但是请你先别懵逼,我继续演示,等会再解释,绘制森林图

scitb6forest(out)

在这里插入图片描述
文章中的森林图就出来了,第二种格式

out<-scitb6(data=bc,x="fage",y="case",Interaction=Interaction,cov = cov1,family="glm",type = "B")

好了,两者结果都出来了,我来解释一下,我们先把第一个表格导出来

putoutdata(out)

查看一下生成结果

在这里插入图片描述
我们对这个结果手动改一下,这样感觉是不是就很熟悉了

在这里插入图片描述
还是不明白咱们再对比一下,

在这里插入图片描述
在这里插入图片描述

手动改一下就直接可以投稿了。下面介绍一下cox回归,差不多的,导入并整理数据

library(foreign)
library(survival)
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)
bc$histgrad<-as.factor(bc$histgrad)
bc$pathscat<-as.factor(bc$pathscat)

设置协变量和分层变量

cov1<-c("er")
Interaction<-c("histgrad")

生成结果

out<-scitb6(data=bc,x="ln_yesno",y="status",Interaction=Interaction,cov = cov1,family="cox",time="time")
scitb6forest(out)

在这里插入图片描述
下面来个广义混合线性模型的,生成一个数据,其实就是前面的数据加个随机项

##先生成一个数据
can <- c(rep(1, times = 231), rep(0, times = 178), rep(1, times = 11), rep(0, times = 38))
smk <- c(rep(1, times = 225), rep(0, times = 6), rep(1, times = 166), rep(0, times = 12), rep(1, times = 8), rep(0, times = 3), rep(1, times = 18), rep(0, times = 20))
alc <- c(rep(1, times = 409), rep(0, times = 49))
dat.df01 <- data.frame(alc, smk, can)
dat.df01$d <- rep(NA, times = nrow(dat.df01))
dat.df01$d[dat.df01$alc == 0 & dat.df01$smk == 0] <- 0
dat.df01$d[dat.df01$alc == 1 & dat.df01$smk == 0] <- 1
dat.df01$d[dat.df01$alc == 0 & dat.df01$smk == 1] <- 2
dat.df01$d[dat.df01$alc == 1 & dat.df01$smk == 1] <- 3
dat.df01$d <- factor(dat.df01$d)
set.seed(1234)
dat.df01$inst <- round(runif(n = nrow(dat.df01), min = 1, max = 5), digits = 0)

在这里插入图片描述
做法差不多的,就是加个ID和改下family

bc<-dat.df01
bc$alc<-as.factor(bc$alc)
bc$smk<-as.factor(bc$smk)
out<-scitb6(data=bc,x="alc",y="can",Interaction="smk",id="inst",cov = NULL,family="lme4")

在这里插入图片描述
最后就是gee模型

#######gee模型
out<-scitb6(data=bc,x="alc",y="can",Interaction="smk",id="inst",cov = NULL,family="gee")
scitb6forest(out)

在这里插入图片描述
可以看到gee和glmm模型算出来的东西基本一样。

看文字理解有点费劲,下面还有视频,欢迎观看

相加效应交互函数发布—适用于逻辑回归、cox回归、glmm、gee模型

相关文章:

相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型

在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化&#xff0c;两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的&#xff1a;乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于&#xff08;…...

用gpg和sha256验证ubuntu.iso

链接 https://ubuntu.com/tutorials/how-to-verify-ubuntuhttps://releases.ubuntu.com/jammy/ 本文是2的简明版 sha256sum介绍 sha256sum -c SHA256SUMS 2>&1这段脚本的作用是验证文件的 SHA-256 校验和。具体来说&#xff0c;命令的各个部分含义如下&#xff1a; …...

深入解析 ZooKeeper:分布式协调服务的原理与应用

1.说说 Zookeeper 是什么&#xff1f; ZooKeeper 是一个开源的分布式协调服务&#xff0c;由 Apache Software Foundation 开发维护。它为构建分布式应用程序提供了一套简单且高效的协调接口。ZooKeeper 的设计目的是为了简化分布式系统中常见的任务&#xff0c;例如命名、配置…...

【Rust自学】11.10. 集成测试

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 11.10.1. 什么是集成测试 在Rust里&#xff0c;集成测试完全位于被测试库的外部。集成测试调用库的方式和其他代码一样&#xff0c;这也…...

对当前日期进行按年、按月、按日的取值

对当前日期进行按年、按月、按日的取值。 其规则为&#xff1a; 按年 为当前日期到来年同一日期的前一天&#xff08;2024-12-01到2025-11-30&#xff09;。 按月 为当前日期到下个月的同一日期的前一天 &#xff08;2024-12-01 到 2024-12-31&#xff09;。 按日 为当前日…...

【Rust自学】12.2. 读取文件

12.2.0. 写在正文之前 第12章要做一个实例的项目——一个命令行程序。这个程序是一个grep(Global Regular Expression Print)&#xff0c;是一个全局正则搜索和输出的工具。它的功能是在指定的文件中搜索出指定的文字。 这个项目分为这么几步&#xff1a; 接收命令行参数读…...

C++内存泄露排查

内存泄漏是指程序动态分配的内存未能及时释放&#xff0c;导致系统内存逐渐耗尽&#xff0c;最终可能造成程序崩溃或性能下降。在C中&#xff0c;内存泄漏通常发生在使用new或malloc等分配内存的操作时&#xff0c;但没有正确地使用delete或free来释放这块内存。 在日常开发过程…...

Http 响应状态码 前后端联调

http 响应状态码 &#xff1a;是服务器在处理HTTP请求时返回的状态信息&#xff0c;用于表示请求的处理结果 1xx : 信息性状态码 100 Continue: 服务器已收到请求头部&#xff0c;客户端应继续发送请求体。 101 Switching Protocols : 切换协议。服务器已理解客户端的请求&a…...

48_Lua错误处理

在编写Lua应用时,都可能会遇到不可预见的错误,而错误处理是确保程序稳定性和健壮性的关键环节。有效的错误处理不仅能防止程序崩溃,还能提供有用的反馈信息给开发者或最终用户,从而提高应用程序的质量。本文将详细介绍Lua中的错误处理机制。 1.错误类型 Lua中的错误类型主…...

shell脚本回顾1

1、shell 脚本写出检测 /tmp/size.log 文件如果存在显示它的内容&#xff0c;不存在则创建一个文件将创建时间写入。 一、 ll /tmp/size.log &>/dev/null if [ $? -eq 0 ];then cat /tmp/size.log else touch /tmp/size.log echo date > /tmp/size.log fi二、 if …...

【3】管理无线控制器

1.概述 本文主要介绍AireOS WLC的管理。WLC的管理可以通过CLI和GUI两种方式,而CLI主要分为console接入、telnet以及SSH的登录管理;GUI的管理分为HTTP和HTTPS。 2.CLI的管理 通过console实现的CLI管理这里就单独进行说明了,只要能找到设备的console接口,通过一般的RJ45接…...

SOME/IP 协议详解——服务发现

文章目录 1. Introduction &#xff08;引言&#xff09;2. SOME/IP Service Discovery (SOME/IP-SD)2.1 General&#xff08;概述)2.2 SOME/IP-SD Message Format2.2.1 通用要求2.2.2 SOME/IP-SD Header2.2.3 Entry Format2.2.4 Options Format2.2.4.1 配置选项&#xff08;Co…...

Flutter:封装ActionSheet 操作菜单

演示效果图 action_sheet_util.dart import package:ducafe_ui_core/ducafe_ui_core.dart; import package:flutter/material.dart; import package:demo/common/index.dart;class ActionSheetUtil {/// 底部操作表/// [context] 上下文/// [title] 标题/// [items] 选项列表 …...

力扣 全排列

回溯经典例题。 题目 通过回溯生成所有可能的排列。每次递归时&#xff0c;选择一个数字&#xff0c;直到选满所有数字&#xff0c;然后记录当前排列&#xff0c;回到上层时移除最后选的数字并继续选择其他未选的数字。每次递归时&#xff0c;在 path 中添加一个新的数字&…...

Golang 设计模式

文章目录 创建型模式简单工厂模式图形接口具体图形类&#xff1a;圆形具体图形类&#xff1a;矩形工厂类定义使用简单工厂模式 抽象工厂模式1. 定义产品接口2. 定义具体产品实现类3. 定义抽象工厂接口4. 定义具体工厂实现类5. 使用抽象工厂创建对象并使用产品 创建者模式1. 定义…...

Matlab 具有周期性分布的死角孔的饱和空气多孔材料的声学特性

本文对直主孔含侧空腔&#xff08;死角&#xff09;的饱和空气多孔介质中的声传播进行了理论和数值研究。侧腔位于沿每个主孔周期性间隔的“节点”上。研究了侧向空腔分布中周期性的影响&#xff0c;并单独考虑了紧间隔死角的低频极限。结果表明&#xff0c;吸附系数和透射损失…...

maven 项目怎么指定打包后名字

在 Spring Boot 的 Maven 项目中&#xff0c;你可以通过配置 pom.xml 文件来指定打包后的文件名。具体步骤如下&#xff1a; 打开 pom.xml 文件&#xff1a;找到你的项目根目录下的 pom.xml 文件。 配置 finalName 属性&#xff1a;在 标签下&#xff0c;添加 属性来指定打包后…...

Java Web开发进阶——Spring Boot与Thymeleaf模板引擎

Thymeleaf 是一个现代化的、功能强大的 Java 模板引擎&#xff0c;常用于生成 Web 应用程序的视图。它与 Spring Boot 的集成十分方便&#xff0c;并且提供了丰富的功能&#xff0c;能够帮助开发者实现动态渲染数据、处理表单、页面控制等操作。下面&#xff0c;我们将详细探讨…...

论文笔记(四十七)Diffusion policy: Visuomotor policy learning via action diffusion(下)

Diffusion policy: Visuomotor policy learning via action diffusion&#xff08;下&#xff09; 文章概括5. 评估5.1 模拟环境和数据集5.2 评估方法论5.3 关键发现5.4 消融研究 6 真实世界评估6.1 真实世界Push-T任务6.2 杯子翻转任务6.3 酱汁倒入和涂抹任务 7. 实际双臂任务…...

开始使用Panuon开源界面库环境配置并手写VS2019高仿界面

1. Panuon环境配置 1.1. 通过Nuget 安装 Panuon.WPF.UI1.2. xaml引用命名空间1.3. using Panuon.WPF.UI; 2. VS2019 view 2.1. 设置窗体尺寸和title2.2. 添加静态资源 2.2.1. 什么是静态资源 2.3. 主Grid 2.3.1. 盒子模型2.3.2. 嵌套布局 3. 总结 1. Panuon环境配置 1.1. 通…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

SQLSERVER-DB操作记录

在SQL Server中&#xff0c;将查询结果放入一张新表可以通过几种方法实现。 方法1&#xff1a;使用SELECT INTO语句 SELECT INTO 语句可以直接将查询结果作为一个新表创建出来。这个新表的结构&#xff08;包括列名和数据类型&#xff09;将与查询结果匹配。 SELECT * INTO 新…...

篇章一 论坛系统——前置知识

目录 1.软件开发 1.1 软件的生命周期 1.2 面向对象 1.3 CS、BS架构 1.CS架构​编辑 2.BS架构 1.4 软件需求 1.需求分类 2.需求获取 1.5 需求分析 1. 工作内容 1.6 面向对象分析 1.OOA的任务 2.统一建模语言UML 3. 用例模型 3.1 用例图的元素 3.2 建立用例模型 …...

Ubuntu 安装 Mysql 数据库

首先更新apt-get工具&#xff0c;执行命令如下&#xff1a; apt-get upgrade安装Mysql&#xff0c;执行如下命令&#xff1a; apt-get install mysql-server 开启Mysql 服务&#xff0c;执行命令如下&#xff1a; service mysql start并确认是否成功开启mysql,执行命令如下&am…...

LeetCode第244题_最短单词距离II

LeetCode第244题&#xff1a;最短单词距离II 问题描述 设计一个类&#xff0c;接收一个单词数组 wordsDict&#xff0c;并实现一个方法&#xff0c;该方法能够计算两个不同单词在该数组中出现位置的最短距离。 你需要实现一个 WordDistance 类: WordDistance(String[] word…...