jupyter notebook练手项目:线性回归——学习时间与成绩的关系
线性回归——学习时间与学习成绩的关系
第1步:导入工具库
pandas——数据分析库,提供了数据结构(如DataFrame和Series)和数据操作方法,方便对数据集进行读取、清洗、转换等操作。
matplotlib——绘图库,pyplot提供了一系列简单易用的绘图函数,用于创建各种类型的图表,如折线图、散点图、柱状图等。
%matplotlib inline——使matplotlib绘制的图像嵌入在 Jupyter Notebook 的单元格里,这样在运行代码后可以直接在 Notebook 中看到绘制的图形,而不是弹出一个新的图形窗口。
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
第2步:导入并查看数据集
dataset = pd.read_csv(‘./studentscores.csv’)——使用pandas的read_csv函数读取当前目录下名为studentscores.csv的 CSV 文件,并将数据存储在dataset变量中。
dataset是一个DataFrame类型的对象,它类似于一个二维表格,每行代表一条数据记录,每列代表一个特征或变量。
Series 是简单的一列数据,而 DataFrame 是由多个 Series 组成的更复杂的表格结构
dataset=pd.read_csv('./studentscores.csv')
type(dataset)
pandas.core.frame.DataFrame
dataset.head()
| Hours | Scores | |
|---|---|---|
| 0 | 2.5 | 21 |
| 1 | 5.1 | 47 |
| 2 | 3.2 | 27 |
| 3 | 8.5 | 75 |
| 4 | 3.5 | 30 |
head()——默认显示前5行数据,用于快速查看数据的大致结构和内容
shape——数据集的形状,(25行,2列)
columns——列名集合
info()——详细信息
describe()——各种描述性统计分析
dataset.shape
(25, 2)
dataset.columns
Index(['Hours', 'Scores'], dtype='object')
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 Hours 25 non-null float641 Scores 25 non-null int64
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
dataset.describe()
| Hours | Scores | |
|---|---|---|
| count | 25.000000 | 25.000000 |
| mean | 5.012000 | 51.480000 |
| std | 2.525094 | 25.286887 |
| min | 1.100000 | 17.000000 |
| 25% | 2.700000 | 30.000000 |
| 50% | 4.800000 | 47.000000 |
| 75% | 7.400000 | 75.000000 |
| max | 9.200000 | 95.000000 |
第3步:提取特征和标签
定义了两个列表feature_columns和label_column,分别用于指定数据集的特征列和标签列。
这里将Hours列作为特征列(x),将Scores列作为标签列(y),即要预测的目标变量。
feature_columns=['Hours']
label_column=['Scores']
features = dataset[feature_columns]:从dataset中提取feature_columns指定的列数据,存储在features变量中,features也是一个DataFrame对象。
label = dataset[label_column]:从dataset中提取label_column指定的列数据,存储在label变量中,label是一个DataFrame对象,但只有一列数据。
features=dataset[feature_columns]
label=dataset[label_column]
type(features)
pandas.core.frame.DataFrame
features.head()
| Hours | |
|---|---|
| 0 | 2.5 |
| 1 | 5.1 |
| 2 | 3.2 |
| 3 | 8.5 |
| 4 | 3.5 |
在机器学习模型中,通常需要使用 numpy 数组格式的数据来进行训练和预测。sklearn 等机器学习库中的大多数函数和模型都期望输入数据为 numpy 数组形式。通过使用 .values 属性,我们可以将 pandas 数据结构中的数据提取为 numpy 数组,以便与这些机器学习模型兼容。
X=features.values
Y=label.values
第4步:划分数据集
四分之一作为训练集
从sklearn.model_selection模块中导入train_test_split函数,该函数用于将数据集拆分为训练集和测试集。
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42):X:特征矩阵,y:目标向量,test_size:测试集的比例,random_state:随机数种子
关于随机数种子:
作用?设置此参数可以保证每次运行代码时,数据的划分结果是相同的,有助于代码的可重复性。
可重复性?指我们可以在相同的训练集和测试集上测试不同的模型或模型参数,公平地比较它们的效果,而不用担心是因为数据集划分不同导致的结果差异。
参数取值?该参数的取值没有特定的限制,通常可以是任意整数;但是不建议用默认值NULL,这样每次调用 train_test_split 函数会使用不同的随机数种子,导致每次数据集的划分结果不同。
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=1/4,random_state=0)
第5步:建立模型
训练模型
从sklearn.linear_model模块中导入LinearRegression线性回归模型类。
regressor = LinearRegression():创建一个LinearRegression类的实例regressor,即初始化一个线性回归模型。
regressor = regressor.fit(X_train, Y_train):调用regressor的fit方法,使用训练集数据X_train和Y_train对线性回归模型进行训练,拟合出模型的参数(如斜率和截距)。
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor=regressor.fit(X_train,Y_train)
测试模型
调用predict方法:使用训练好的线性回归模型regressor对测试集特征X_test进行预测,得到预测结果Y_pred。
Y_pred=regressor.predict(X_test)
可视化
#散点图:红色点表示原始测试集的点,蓝色表示预测点
plt.scatter(X_test,Y_test,color='red')
plt.scatter(X_test,Y_pred,color='blue',marker='*')
#线图:蓝色线表示训练出来的回归线
plt.plot(X_test,Y_pred,color='blue')
plt.show()

相关文章:
jupyter notebook练手项目:线性回归——学习时间与成绩的关系
线性回归——学习时间与学习成绩的关系 第1步:导入工具库 pandas——数据分析库,提供了数据结构(如DataFrame和Series)和数据操作方法,方便对数据集进行读取、清洗、转换等操作。 matplotlib——绘图库,p…...
dockerfile2.0
dockerfile实现lnmp nginx centos7 mysql centos7 php centos7 自定义镜像来实现整个架构 cd /opt mkdir nginx mysql php cd nginx 拖入nginx和wordpress vim Dockerfile vim nginx.conf ↓ worker_processes 1; events {worker_connections 1024; } http {include …...
【spring mvc】文件上传、下载
文件上传,存储至本地目录中 一、代码1、工具类(敏感后缀过滤)2、文件上传,存储至本地3、文件下载 二、效果演示1、上传1.1、postMan 请求1.2、上传效果 2、下载2.1、下载效果 一、代码 1、工具类(敏感后缀过滤&#x…...
FPGA工程师成长四阶段
朋友,你有入行三年、五年、十年的职业规划吗?你知道你所做的岗位未来该如何成长吗? FPGA行业的发展近几年是蓬勃发展,有越来越多的人才想要或已经踏进了FPGA行业的大门。很多同学在入行FPGA之前,都会抱着满腹对职业发…...
java fastjson2 解析JSON用法解析
Fastjson2 是 Fastjson 的升级版本,提供了更好的性能和扩展性,同时也在 API 和功能上做了很多改进。使用 Fastjson2 解析 JSON 数据非常简单,支持多种方式来解析 JSON 字符串、嵌套 JSON 对象和数组、以及转换成 Java 对象。下面详细介绍 Fas…...
计算机视觉算法实战——步态识别(主页有源码)
✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ 1. 步态识别简介✨✨ 步态识别(Gait Recognition)是计算机视觉领域中的一个…...
LabVIEW水位监控系统
LabVIEW开发智能水位监控系统通过集成先进的传感技术与控制算法,为工业液体存储提供精确的水位调控,保证了生产过程的连续性与安全性。 项目背景 在化工和饮料生产等行业中,水位控制的准确性对保证生产安全和提高产品质量至关重要。传统的水…...
网络层协议-----IP协议
目录 1.认识IP地址 2.IP地址的分类 3.子网划分 4.公网IP和私网IP 5.IP协议 6.如何解决IP地址不够用 1.认识IP地址 IP 地址(Internet Protocol Address)是指互联网协议地址。 它是分配给连接到互联网的设备(如计算机、服务器、智能手机…...
计算机网络八股文学习笔记
总结来自于javaguide,本文章仅供个人学习复习 javaguide计算机网络八股 文章目录 计算机网络基础网络分层模型OSI七层模型TCP/IP四层模型 HTTP从输入URL到页面展示到底发生了什么?(非常重要)HTTP状态码HTTP Header中常见的字段有哪些?HTTP和HTTPS有什么区别?(重要)HTTP/1.0和…...
IntelliJ IDEA中Maven项目的配置、创建与导入全攻略
大家好,我是袁庭新。 IntelliJ IDEA是当前最流行的Java IDE(集成开发环境)之一,也是业界公认最好用的Java开发工具之一。IntelliJ IDEA支持Maven的全部功能,通过它我们可以很轻松地实现创建Maven项目、导入Maven项目、…...
如何在Jupyter中快速切换Anaconda里不同的虚拟环境
目录 介绍 操作步骤 1. 选择环境,安装内核 2. 注册内核 3. 完工。 视频教程 介绍 很多网友在使用Jupyter的时候会遇到各种各样的问题,其中一个比较麻烦的问题就是我在Anaconda有多个Python的环境里面,如何让jupyter快速切换不同的Pyt…...
stack和queue专题
文章目录 stack最小栈题目解析代码 栈的压入弹出序列题目解析代码 queue二叉树的层序遍历题目解析代码 stack stack和queue都是空间适配器 最小栈 最小栈的题目链接 题目解析 minst是空就进栈,或者是val < minst.top()就进栈 代码 class MinStack { public:M…...
【Vue】点击侧边导航栏,右侧main对应显示
需求:点击侧边导航栏,右侧main对应显示 通过v-if或v-show等指令来控制不同内容的显示隐藏来实现 注意: 使用v-if时候进行导航栏切换,右侧显示区域可能会出现样式错乱;使用v-show则不会出现此错误 <template>&…...
【Debug】django.db.utils.OperationalError: (1040, ‘Too many connections‘)
报错: django.db.utils.OperationalError: (1040, ‘Too many connections‘) 排查 可能是Mysql的连接数量超过了允许的最大连接数量; 查看Mysql允许最大连接数量: -- 查看允许连接的最大数量 SHOW VARIABLES LIKE %max_connections%;-- 查…...
如何开放2375和2376端口供Docker daemon监听
Linux (以 Ubuntu 为例) 1. 修改 Docker 配置文件 打开 Docker 的配置文件 /etc/docker/daemon.json。如果该文件不存在,则可以创建一个新的。 bash sudo nano /etc/docker/daemon.json在配置文件中添加以下内容: json {"hosts": ["un…...
RabbitMQ确保消息可靠性
消息丢失的可能性 支付服务先扣减余额和更新支付状态(这俩是同步调用),然后通过RabbitMq异步调用支付服务更新订单状态。但是有些情况下,可能订单已经支付 ,但是更新订单状态却失败了,这就出现了消息丢失。…...
前端常见的设计模式之【单例模式】
前端常见的设计模式: 单例模式观察者模式工厂模式适配器模式装饰器模式命令模式迭代器模式组合模式策略模式发布订阅模式 单例模式【创建型设计模式】: 单例模式是确保一个类只有一个实例,并提供一个全局访问点。这个模式非常适合那些需要…...
【React】脚手架进阶
目录 暴露webpack配置package.json的变化修改webpack.config.js配置less修改域名、端口号浏览器兼容处理处理跨域 暴露webpack配置 react-scripts对脚手架中的打包命令进行封装,如何暴露这些打包配置呢?上篇写到在package.json中的scripts配置项中有eje…...
win32汇编环境,窗口程序中单选框的一般操作示例
;运行效果 ;win32汇编环境,窗口程序中单选框的一般操作示例 ;比如在窗口程序中生成单选框,默认哪项选中,判断当前选中哪一项,让哪项选中,得到选中项的名称等 ;直接抄进RadAsm可编译运行。重点部分加备注。 ;以下是ASM文件 ;>&g…...
如何移除git中被跟踪的commit文件
忽略已被跟踪的文件 问题描述 如果某个文件已经被 Git 跟踪(即已被提交到仓库),即使后来将其添加到 .gitignore 文件中,Git 仍会继续跟踪它。 解决方案 更新 .gitignore 文件 将需要忽略的文件加入 .gitignore: .env…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
