当前位置: 首页 > news >正文

OpenCV相机标定与3D重建(55)通用解决 PnP 问题函数solvePnPGeneric()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

根据3D-2D点对应关系找到物体的姿态。
cv::solvePnPGeneric 是 OpenCV 中一个更为通用的函数,用于解决 PnP 问题。它能够返回多个可能的姿态解(旋转和平移向量),并且支持多种不同的求解方法。这在某些情况下特别有用,例如当存在多解时,或者需要评估不同解的质量。

  • 此函数返回所有可能的解的列表(一个解是一对<旋转向量, 平移向量>),具体取决于输入点的数量和选择的方法:

  • P3P 方法(SOLVEPNP_P3P, SOLVEPNP_AP3P):需要 3 或 4 个输入点。如果有 3 个输入点,返回的解的数量可以在 0 到 4 之间。
    -SOLVEPNP_IPPE:输入点必须 >= 4 且物体点必须共面。返回 2 个解。

  • SOLVEPNP_IPPE_SQUARE:适用于标记姿态估计的特殊情况。输入点的数量必须是 4,并且返回 2 个解。物体点必须按以下顺序定义:

    • 点 0: [-squareLength / 2, squareLength / 2, 0]
    • 点 1: [ squareLength / 2, squareLength / 2, 0]
    • 点 2: [ squareLength / 2, -squareLength / 2, 0]
    • 点 3: [-squareLength / 2, -squareLength / 2, 0]
  • 对于所有其他标志,输入点的数量必须 >= 4,且物体点可以是任意配置。仅返回 1 个解。

函数原型


int cv::solvePnPGeneric
(InputArray 	objectPoints,InputArray 	imagePoints,InputArray 	cameraMatrix,InputArray 	distCoeffs,OutputArrayOfArrays 	rvecs,OutputArrayOfArrays 	tvecs,bool 	useExtrinsicGuess = false,SolvePnPMethod 	flags = SOLVEPNP_ITERATIVE,InputArray 	rvec = noArray(),InputArray 	tvec = noArray(),OutputArray 	reprojectionError = noArray() 
)		

参数

  • 参数 objectPoints:物体坐标空间中的物体点数组,格式为 Nx3 的单通道或 1xN/Nx1 的三通道,其中 N 是点的数量。也可以传递 vector。
    -参数imagePoints:对应的图像点数组,格式为 Nx2 的单通道或 1xN/Nx1 的双通道,其中 N 是点的数量。也可以传递 vector。
    -参数cameraMatrix:输入的相机内参矩阵 A = [ f x 0 c x 0 f y c y 0 0 1 ] A = \begin{bmatrix}f_x & 0 & c_x \\0 & f_y & c_y \\0 & 0 & 1\end{bmatrix} A= fx000fy0cxcy1
    -参数distCoeffs:输入的畸变系数向量 (k1, k2, p1, p2[, k3[, k4, k5, k6[, s1, s2, s3, s4[, τx, τy]]]]),包含 4、5、8、12 或 14 个元素。如果该向量为空,则假设畸变为零。
    -参数rvecs:输出的旋转向量数组(见 Rodrigues),与 tvecs 一起使用,将模型坐标系中的点变换到相机坐标系中。
    -参数tvecs:输出的平移向量数组。
    -参数useExtrinsicGuess:仅用于 SOLVEPNP_ITERATIVE 方法。如果为 true(1),函数会使用提供的 rvec 和 tvec 值作为旋转和平移向量的初始近似值,并进一步优化它们。
    -参数flags:解决 PnP 问题的方法,详见 calib3d_solvePnP_flags。
    -参数rvec:当标志为 SOLVEPNP_ITERATIVE 且 useExtrinsicGuess 设置为 true 时,用于初始化迭代 PnP 精化算法的旋转向量。
    -参数tvec:当标志为 SOLVEPNP_ITERATIVE 且 useExtrinsicGuess 设置为 true 时,用于初始化迭代 PnP 精化算法的平移向量。
    -参数reprojectionError:可选的重投影误差向量,即输入图像点和用估计的姿态投影的 3D 物体点之间的均方根误差 RMSE = ∑ i N ( y i ^ − y i ) 2 N \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} RMSE=NiN(yi^yi)2

  • 关于如何使用 solvePnP 进行平面增强现实的一个示例可以在 opencv_source_code/samples/python/plane_ar.py 找到。

  • 如果你使用的是 Python:

    • Numpy 数组切片不能作为输入,因为 solvePnP 需要连续的数组(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 55 行通过 cv::Mat::checkVector() 断言强制要求)。
    • P3P 算法要求图像点位于形状为 (N,1,2) 的数组中,因为它调用了 undistortPoints(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 75 行),这需要双通道信息。
    • 因此,给定一些数据 D = np.array(…),其中 D.shape = (N,M),为了使用其子集作为例如 imagePoints,必须有效地将其复制到一个新数组中:imagePoints = np.ascontiguousarray(D[:,:2]).reshape((N,1,2))。
  • 方法 SOLVEPNP_DLS 和 SOLVEPNP_UPNP 不能使用,因为当前实现不稳定,有时会给出完全错误的结果。如果你传递了这两个标志中的一个,则会使用 SOLVEPNP_EPNP 方法代替。

  • 在一般情况下,最少需要 4 个点。
    对于 SOLVEPNP_P3P 和 SOLVEPNP_AP3P 方法,必须使用恰好 4 个点(前 3 个点用于估计 P3P 问题的所有解,最后一个点用于保留最小化重投影误差的最佳解)。

  • 使用 SOLVEPNP_ITERATIVE 方法且 useExtrinsicGuess=true 时,最少需要 3 个点(3 个点足以计算姿态,但最多有 4 个解)。初始解应接近全局解以收敛。

  • 使用 SOLVEPNP_IPPE 时,输入点必须 >= 4 且物体点必须共面。

  • 使用 SOLVEPNP_IPPE_SQUARE 时,这是一个适用于标记姿态估计的特殊情况。输入点的数量必须是 4。物体点必须按以下顺序定义:

    • 点 0: [-squareLength / 2, squareLength / 2, 0]
    • 点 1: [ squareLength / 2, squareLength / 2, 0]
    • 点 2: [ squareLength / 2, -squareLength / 2, 0]
    • 点 3: [-squareLength / 2, -squareLength / 2, 0]

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>using namespace cv;
using namespace std;int main()
{// 假设我们有一个已知的 3D 点集 (例如一个正方形的四个角)std::vector< Point3f > objectPoints = { Point3f( -1.0f, -1.0f, 0.0f ), Point3f( 1.0f, -1.0f, 0.0f ), Point3f( 1.0f, 1.0f, 0.0f ), Point3f( -1.0f, 1.0f, 0.0f ) };// 对应的 2D 图像点 (这些点是从图像中检测到的特征点)std::vector< Point2f > imagePoints = { Point2f( 594.0f, 487.0f ), Point2f( 673.0f, 487.0f ), Point2f( 673.0f, 552.0f ), Point2f( 594.0f, 552.0f ) };// 相机内参矩阵 (假设已知)Mat cameraMatrix = ( Mat_< double >( 3, 3 ) << 718.856, 0, 607.1928, 0, 718.856, 185.2157, 0, 0, 1 );// 畸变系数 (假设已知)Mat distCoeffs = Mat::zeros( 5, 1, CV_64F );  // 如果没有畸变或忽略畸变,则可以是零矩阵// 初始化输出变量std::vector< Mat > rvecs, tvecs;Mat reprojectionError;// 调用 solvePnPGeneric 函数int solutionsFound = solvePnPGeneric( objectPoints, imagePoints, cameraMatrix, distCoeffs, rvecs, tvecs, false, SOLVEPNP_ITERATIVE, noArray(), noArray(), reprojectionError );if ( solutionsFound > 0 ){cout << "Number of solutions found: " << solutionsFound << endl;for ( int i = 0; i < solutionsFound; ++i ){cout << "\nSolution " << i + 1 << ":\n";cout << "Rotation Vector:\n" << rvecs[ i ] << "\nTranslation Vector:\n" << tvecs[ i ] << endl;// 可选:将旋转向量转换为旋转矩阵以更好地理解结果Mat rotationMatrix;Rodrigues( rvecs[ i ], rotationMatrix );cout << "Rotation Matrix:\n" << rotationMatrix << endl;}if ( !reprojectionError.empty() ){cout << "Reprojection Error: " << reprojectionError.at< double >( 0 ) << endl;}}else{cout << "solvePnPGeneric failed to find any solution." << endl;}return 0;
}

运行结果

Number of solutions found: 1Solution 1:
Rotation Vector:
[0.2895361443049176;0.01328548677652798;-0.008684530349597173]
Translation Vector:
[0.6665924885943908;8.493287223698232;18.23641869746051]
Rotation Matrix:
[0.999874917527441, 0.01047321277960457, 0.01185162915241468;-0.006653461772789516, 0.9583398410008748, -0.2855529383439369;-0.01434854508064377, 0.2854383663148514, 0.9582896526048779]
Reprojection Error: 5.21212e-315

相关文章:

OpenCV相机标定与3D重建(55)通用解决 PnP 问题函数solvePnPGeneric()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 根据3D-2D点对应关系找到物体的姿态。 cv::solvePnPGeneric 是 OpenCV 中一个更为通用的函数&#xff0c;用于解决 PnP 问题。它能够返回多个可能…...

vue3学习日记5 - 项目起步

最近发现职场前端用的框架大多为vue&#xff0c;所以最近也跟着黑马程序员vue3的课程进行学习&#xff0c;以下是我的学习记录 视频网址&#xff1a; Day2-11.项目起步-静态资源引入和ErrorLen安装_哔哩哔哩_bilibili 学习日记&#xff1a; vue3学习日记1 - 环境搭建-CSDN博…...

java导出pdf文件

java导出pdf&#xff0c;前端下载 1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接 使用注意点 因为原来制作的pdf表单内容过于复杂&#xff0c;下面代码只包含前两行的操作。 本次操作需要前端向后端发起请求&#xff0c;后端返回数据给前端…...

【MySQL学习笔记】MySQL视图View

视图View 1、视图的基础语法2、检查选项3、视图的更新4、视图的作用 视图&#xff08;View&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的。 通俗的讲&…...

从玩具到工业控制--51单片机的跨界传奇【2】

咱们在上一篇博客里面讲解了什么是单片机《单片机入门》&#xff0c;让大家对单片机有了初步的了解。我们今天继续讲解一些有关单片机的知识&#xff0c;顺便也讲解一下我们单片机用到的C语言知识。如果你对C语言还不太了解的话&#xff0c;可以看看博主的C语言专栏哟&#xff…...

【Redis】初识Redis

目录 Redis简介 Redis在内存中存储数据 Redis数据库中的应用 Redis缓存中的应用 Redis消息中间件 尾言 Redis简介 如下是Redis官网中&#xff0c;对Redis的一段描述 在这段描述中&#xff0c;我们提取如下关键要点&#xff1a; Redis主要用于在内存中存储数据Redis可…...

docker虚拟机平台未启用问题

在终端中输入如下代码&#xff0c;重启电脑即可 Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform 对于Docker Desktop - Unexpected WSL error问题 参考链接 解决WSL2与docker冲突问题...

《零基础Go语言算法实战》【题目 2-22】Go 调度器优先调度问题

《零基础Go语言算法实战》 【题目 2-22】Go 调度器优先调度问题 下面代码的输出是什么&#xff1f;请说明原因。 package main import ( "fmt" "runtime" "sync" ) func main() { runtime.GOMAXPROCS(1) wg : sync.WaitGroup{} wg.Add(10)…...

关于使用FastGPT 摸索的QA

近期在通过fastGPT&#xff0c;创建一些基于特定业务场景的、相对复杂的Agent智能体应用。 工作流在AI模型的基础上&#xff0c;可以定义业务逻辑&#xff0c;满足输出对话之外的需求。 在最近3个月来的摸索和实践中&#xff0c;一些基于经验的小问题点&#xff08;自己也常常…...

关于H5复制ios没有效果

问题场景&#xff1a;今天遇到这样一个问题&#xff0c;需要从后端接口获取到的值进行复制&#xff0c;且不能提现调用获取值&#xff0c;因为是一个数据列表&#xff0c;每个列表元素需要当场点击调用接口获取值进行复制&#xff0c;本来以为很简单的一个需求&#xff0c;当做…...

【STM32-学习笔记-3-】TIM定时器

文章目录 TIM定时器Ⅰ、TIM定时器函数Ⅱ、TIM_TimeBaseInitTypeDef结构体参数①、TIM_ClockDivision②、TIM_CounterMode③、TIM_Period④、TIM_Prescaler⑤、TIM_RepetitionCounter Ⅱ、定时器配置Ⅲ、定时器外部中断NVIC配置 TIM定时器 Ⅰ、TIM定时器函数 // 将定时器寄存器…...

EMS专题 | 守护数据安全:数据中心和服务器机房环境温湿度监测

您需要服务器机房温度监测解决方案吗&#xff1f; 服务器机房是企业中用于存储、管理和维护服务器及其相关组件的设施。服务器机房通常位于数据中心内&#xff0c;是一个专门设计的物理环境&#xff0c;旨在确保服务器的稳定运行和数据的安全性。服务器机房主要起到存储和管理数…...

Vue JavaScript 小写数字金额转换成大写汉字(附编程思路)

一、编程思路&#xff08;本案例只考虑9999万亿以内的数字转换&#xff0c;相信这个金额对于人民币来说已经足够庞大了&#xff0c;超过此数值的金额不保证转换汉字的准确性&#xff0c;且最多精确到小数点后四位&#xff09;&#xff1a; 1、将示例&#xff08;不管是…...

【自动化测试】—— Appium安装配置保姆教程(图文详解)

目录 一. 环境准备 二. JDK安装 1. 下载JDK 2. 安装JDK 3. 配置环境 4. 验证安装 三. Android SDK安装 1. 下载Android SDK 2. 安装Android SDK 3. 安装工具 4. 配置环境 5. 验证安装 四. NodeJS安装 1. 下载NodeJS 2. 安装NodeJS 3. 验证安装 4. 安装淘宝镜像…...

贪心算法详细讲解(沉淀中)

文章目录 1. 什么是贪心算法&#xff1f;&#xff08;贪婪鼠目寸光&#xff09;经典例题1.1.1 找零问题1.1.2最小路径和1.1.3 背包问题 2.贪心算法的特点2.1 证明例1 3.学习贪心的方向心得体会 1. 什么是贪心算法&#xff1f;&#xff08;贪婪鼠目寸光&#xff09; 贪心策略&a…...

RabbitMQ中有哪几种交换机类型?

大家好&#xff0c;我是锋哥。今天分享关于【RabbitMQ中有哪几种交换机类型&#xff1f;】面试题。希望对大家有帮助&#xff1b; RabbitMQ中有哪几种交换机类型&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在RabbitMQ中&#xff0c;交换机&#xf…...

STM32特殊功能引脚详解文章·STM32特殊功能引脚能当作GPIO使用嘛详解!!!

目录 STM32特殊功能引脚 使用STM32特殊功能引脚函数 禁止搬运&#xff0c;仅供学习&#xff0c;编写不易&#xff0c;感谢理解&#xff01;&#xff01;&#xff01; STM32特殊功能引脚 本篇详解文章仅以STM32F103C8T6芯片来讲解&#xff0c;STM32芯片除了普通的GPIO引脚以外…...

Qt QComboBox的QSS美化

美化效果 QSS设置 /*QComboBox风格设置*/ QComboBox#comboBox_1 { border:2px solid #f3f3f3;/*设置边框线宽*/ background-color:rgb(237, 242, 255);/*背景颜色*/ border-radius:5px;/*圆角*/ padding: 1px 2px 1px 2px;/*针对组合框中的文本内容*/ min-width:2em;/*组合框…...

计算机视觉算法实战——实时车辆检测和分类(主页有相关源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ ​​​​​​​​​​​​​​​​​​ 1. 领域介绍✨✨ 实时车辆检测和分类是计算机视觉中的一个重要应用领域&#xff0c;旨在从视频流或…...

what?ngify 比 axios 更好用,更强大?

文章目录 前言一、什么是ngify&#xff1f;二、npm安装三、发起请求3.1 获取 JSON 数据3.2 获取其他类型的数据3.3 改变服务器状态3.4 设置 URL 参数3.5 设置请求标头3.6 与服务器响应事件交互3.7 接收原始进度事件3.8 处理请求失败3.9 Http Observables 四、更换 HTTP 请求实现…...

【2025CVPR】模型融合新范式:PLeaS算法详解(基于排列与最小二乘的模型合并技术)

本文深入解析ICLR 2025顶会论文《PLeaS: Merging Models with Permutations and Least Squares》,揭示模型融合领域突破性进展. 一、问题背景:模型合并的核心挑战 随着开源模型的爆发式增长,如何高效合并多个专用模型成为关键挑战。传统方法存在三大痛点: ​初始化依赖​…...

Ubuntu下有关UDP网络通信的指令

1、查看防火墙状态&#xff1a; sudo ufw status # Ubuntu 2、 检查系统全局广播设置 # 查看是否忽略广播包&#xff08;0表示接收&#xff0c;1表示忽略&#xff09; sysctl net.ipv4.icmp_echo_ignore_broadcasts# 查看是否允许广播转发&#xff08;1表示允许&#xff09…...

OD 算法题 B卷【水果摊小买卖】

文章目录 水果摊小买卖 水果摊小买卖 小王手里有点闲钱&#xff0c;想做点水果买卖&#xff0c;给出两个数组m, n&#xff0c; m[i]表示第i个水果的成本价&#xff0c;n[i]表示第i个水果能卖出的价格&#xff1b;假如现在有本钱k&#xff0c;试问最后最多能赚多少钱&#xff1…...

split方法

在编程中&#xff0c;split 方法通常用于将字符串按照指定的分隔符拆分成多个部分&#xff0c;并返回一个包含拆分结果的列表&#xff08;或数组&#xff09;。不同编程语言中的 split 方法语法略有不同&#xff0c;但核心功能相似。以下是常见语言中的用法&#xff1a; ​1. P…...

算法训练第十天

232. 用栈实现队列 代码&#xff1a; class MyQueue(object):def __init__(self):self.arr1 []self.arr2 []def push(self, x):""":type x: int:rtype: None"""self.arr1.append(x)def pop(self):""":rtype: int""…...

Go 中 map 的双值检测写法详解

Go 中 map 的双值检测写法详解 在 Go 中&#xff0c;if char, exists : pairs[s[i]]; exists { 是一种利用 Go 语言特性编写的优雅条件语句&#xff0c;用于检测 map 中是否存在某个键。让我们分解解释这种写法&#xff1a; 语法结构解析 if value, ok : mapVariable[key]; …...

python版若依框架开发:后端开发规范

python版若依框架开发 从0起步,扬帆起航。 python版若依部署代码生成指南,迅速落地CURD!项目结构解析前端开发规范后端开发规范文章目录 python版若依框架开发1.启动命令2.配置⽂件3.上传配置1.启动命令 本项⽬⾃定义了两个启动命令 pyhton app.py --env=devpython app.p…...

美业破局:AI智能体如何用数据重塑战略决策(5/6)

摘要&#xff1a;文章深入剖析美业现状与挑战&#xff0c;指出其市场规模庞大但竞争激烈&#xff0c;面临获客难、成本高、服务标准化缺失等问题。随后阐述 AI 智能体与数据驱动决策的概念&#xff0c;强调其在美业管理中的重要性。接着详细说明 AI 智能体在美业数据收集、整理…...

C++学习-入门到精通【16】自定义模板的介绍

C学习-入门到精通【16】自定义模板的介绍 目录&#xff09; C学习-入门到精通【16】自定义模板的介绍前言一、类模板创建一个自定义类模板&#xff1a;Stack\<T\> 二、使用函数模板来操作类模板特化的对象三、非类型形参四、模板类型形参的默认实参五、重载函数模板 前言…...

Fetch与Axios:区别、联系、优缺点及使用差异

Fetch与Axios&#xff1a;区别、联系、优缺点及使用差异 文章目录 Fetch与Axios&#xff1a;区别、联系、优缺点及使用差异一、联系二、区别1. 浏览器支持与兼容性2. 响应处理3. 请求拦截和响应拦截4. 错误处理 三、优缺点1. Fetch API优点缺点 2. Axios优点缺点 四、使用上的差…...