当前位置: 首页 > news >正文

【llama_factory】qwen2_vl训练与批量推理

训练llama factory配置文件

文件:examples/train_lora/qwen2vl_lora_sft.yaml

### model
model_name_or_path: qwen2_vl/model_72b
trust_remote_code: true### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all### dataset
dataset: car_item  # video: mllm_video_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16### output
output_dir: saves/qwen2_vl-72b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 25.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z3_config.json
#有坑,默认的配置文件没有设置deepspeed参数,会每张显卡都并行加载一个72B模型导致显卡OOM,经过查阅文献设置deepspeed分布式训练参数,有五种,训练大模型设置显存最低的,训练7b可以设置为ds_z0_config.json
#ds_z0_config.json          ds_z2_config.json          ds_z2_offload_config.json  ds_z3_config.json          ds_z3_offload_config.json  
### eval
val_size: 0.1
per_device_eval_batch_size: 0
eval_strategy: steps
eval_steps: 500
llamafactory-cli train  examples/train_lora/qwen2vl_lora_sft.yaml 

批量推理

文件:examples/train_lora/qwen2vl_lora_sft.yaml

### model
model_name_or_path: qwen2_vl/model_7b
trust_remote_code: true
# method
stage: sft
do_train: false
do_predict: true
predict_with_generate: true
finetuning_type: full# dataset
eval_dataset: car_item  #修改为测试集
template: qwen2_vl
cutoff_len: 2048
max_samples: 200
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/qwen2_vl-7b/lora/sft-infer-1 #修改为保存地址
logging_steps: 1
overwrite_output_dir: true# eval
per_device_eval_batch_size: 4
# generation
max_new_tokens: 128
temperature: 0.1
top_k: 1
```bash
llamafactory-cli train  examples/train_lora/qwen2vl_lora_sft.yaml 
# 总结
总的来说,训练时显存不足需要设置分布式训练方式,deepspeed。
推理时,设置eval_dataset eval相关参数。
另外数据集要进行预处理,搞成标准llama处理格式,加载到data/dataset_info.json中```bash
{"identity": {"file_name": "identity.json"},"alpaca_en_demo": {"file_name": "alpaca_en_demo.json"},"alpaca_zh_demo": {"file_name": "alpaca_zh_demo.json"},"glaive_toolcall_en_demo": {"file_name": "glaive_toolcall_en_demo.json","formatting": "sharegpt","columns": {"messages": "conversations","tools": "tools"}},"glaive_toolcall_zh_demo": {"file_name": "glaive_toolcall_zh_demo.json","formatting": "sharegpt","columns": {"messages": "conversations","tools": "tools"}},"car_item": {"file_name": "car_item/train.json","columns": {"images": "image","prompt": "instruction","query": "input","response": "output"}},"mllm_demo": {"file_name": "mllm_demo.json","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"mllm_video_demo": {"file_name": "mllm_video_demo.json","formatting": "sharegpt","columns": {"messages": "messages","videos": "videos"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"alpaca_en": {"hf_hub_url": "llamafactory/alpaca_en","ms_hub_url": "llamafactory/alpaca_en","om_hub_url": "HaM/alpaca_en"},"alpaca_zh": {"hf_hub_url": "llamafactory/alpaca_zh","ms_hub_url": "llamafactory/alpaca_zh"},"alpaca_gpt4_en": {"hf_hub_url": "llamafactory/alpaca_gpt4_en","ms_hub_url": "llamafactory/alpaca_gpt4_en"},"alpaca_gpt4_zh": {"hf_hub_url": "llamafactory/alpaca_gpt4_zh","ms_hub_url": "llamafactory/alpaca_gpt4_zh","om_hub_url": "State_Cloud/alpaca-gpt4-data-zh"},"glaive_toolcall_en": {"hf_hub_url": "llamafactory/glaive_toolcall_en","formatting": "sharegpt","columns": {"messages": "conversations","tools": "tools"}},"glaive_toolcall_zh": {"hf_hub_url": "llamafactory/glaive_toolcall_zh","formatting": "sharegpt","columns": {"messages": "conversations","tools": "tools"}},"lima": {"hf_hub_url": "llamafactory/lima","formatting": "sharegpt"},"guanaco": {"hf_hub_url": "JosephusCheung/GuanacoDataset","ms_hub_url": "AI-ModelScope/GuanacoDataset"},"belle_2m": {"hf_hub_url": "BelleGroup/train_2M_CN","ms_hub_url": "AI-ModelScope/train_2M_CN"},"belle_1m": {"hf_hub_url": "BelleGroup/train_1M_CN","ms_hub_url": "AI-ModelScope/train_1M_CN"},"belle_0.5m": {"hf_hub_url": "BelleGroup/train_0.5M_CN","ms_hub_url": "AI-ModelScope/train_0.5M_CN"},"belle_dialog": {"hf_hub_url": "BelleGroup/generated_chat_0.4M","ms_hub_url": "AI-ModelScope/generated_chat_0.4M"},"belle_math": {"hf_hub_url": "BelleGroup/school_math_0.25M","ms_hub_url": "AI-ModelScope/school_math_0.25M"},"belle_multiturn": {"script_url": "belle_multiturn","formatting": "sharegpt"},"ultra_chat": {"script_url": "ultra_chat","formatting": "sharegpt"},"open_platypus": {"hf_hub_url": "garage-bAInd/Open-Platypus","ms_hub_url": "AI-ModelScope/Open-Platypus"},"codealpaca": {"hf_hub_url": "sahil2801/CodeAlpaca-20k","ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"},"alpaca_cot": {"hf_hub_url": "QingyiSi/Alpaca-CoT","ms_hub_url": "AI-ModelScope/Alpaca-CoT"},"openorca": {"hf_hub_url": "Open-Orca/OpenOrca","ms_hub_url": "AI-ModelScope/OpenOrca","columns": {"prompt": "question","response": "response","system": "system_prompt"}},"slimorca": {"hf_hub_url": "Open-Orca/SlimOrca","formatting": "sharegpt"},"mathinstruct": {"hf_hub_url": "TIGER-Lab/MathInstruct","ms_hub_url": "AI-ModelScope/MathInstruct","columns": {"prompt": "instruction","response": "output"}},"firefly": {"hf_hub_url": "YeungNLP/firefly-train-1.1M","columns": {"prompt": "input","response": "target"}},"wikiqa": {"hf_hub_url": "wiki_qa","columns": {"prompt": "question","response": "answer"}},"webqa": {"hf_hub_url": "suolyer/webqa","ms_hub_url": "AI-ModelScope/webqa","columns": {"prompt": "input","response": "output"}},"webnovel": {"hf_hub_url": "zxbsmk/webnovel_cn","ms_hub_url": "AI-ModelScope/webnovel_cn"},"nectar_sft": {"hf_hub_url": "AstraMindAI/SFT-Nectar","ms_hub_url": "AI-ModelScope/SFT-Nectar"},"deepctrl": {"ms_hub_url": "deepctrl/deepctrl-sft-data"},"adgen_train": {"hf_hub_url": "HasturOfficial/adgen","ms_hub_url": "AI-ModelScope/adgen","split": "train","columns": {"prompt": "content","response": "summary"}},"adgen_eval": {"hf_hub_url": "HasturOfficial/adgen","ms_hub_url": "AI-ModelScope/adgen","split": "validation","columns": {"prompt": "content","response": "summary"}},"sharegpt_hyper": {"hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k","formatting": "sharegpt"},"sharegpt4": {"hf_hub_url": "shibing624/sharegpt_gpt4","ms_hub_url": "AI-ModelScope/sharegpt_gpt4","formatting": "sharegpt"},"ultrachat_200k": {"hf_hub_url": "HuggingFaceH4/ultrachat_200k","ms_hub_url": "AI-ModelScope/ultrachat_200k","formatting": "sharegpt","columns": {"messages": "messages"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"agent_instruct": {"hf_hub_url": "THUDM/AgentInstruct","ms_hub_url": "ZhipuAI/AgentInstruct","formatting": "sharegpt"},"lmsys_chat": {"hf_hub_url": "lmsys/lmsys-chat-1m","ms_hub_url": "AI-ModelScope/lmsys-chat-1m","formatting": "sharegpt","columns": {"messages": "conversation"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "human","assistant_tag": "assistant"}},"evol_instruct": {"hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k","ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k","formatting": "sharegpt"},"glaive_toolcall_100k": {"hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt","formatting": "sharegpt","columns": {"messages": "conversations","tools": "tools"}},"cosmopedia": {"hf_hub_url": "HuggingFaceTB/cosmopedia","columns": {"prompt": "prompt","response": "text"}},"stem_zh": {"hf_hub_url": "hfl/stem_zh_instruction"},"ruozhiba_gpt4": {"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"},"neo_sft": {"hf_hub_url": "m-a-p/neo_sft_phase2","formatting": "sharegpt"},"magpie_pro_300k": {"hf_hub_url": "Magpie-Align/Magpie-Pro-300K-Filtered","formatting": "sharegpt"},"magpie_ultra": {"hf_hub_url": "argilla/magpie-ultra-v0.1","columns": {"prompt": "instruction","response": "response"}},"web_instruct": {"hf_hub_url": "TIGER-Lab/WebInstructSub","columns": {"prompt": "question","response": "answer"}},"openo1_sft": {"hf_hub_url": "llamafactory/OpenO1-SFT","ms_hub_url": "llamafactory/OpenO1-SFT","columns": {"prompt": "prompt","response": "response"}},"llava_1k_en": {"hf_hub_url": "BUAADreamer/llava-en-zh-2k","subset": "en","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"llava_1k_zh": {"hf_hub_url": "BUAADreamer/llava-en-zh-2k","subset": "zh","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"llava_150k_en": {"hf_hub_url": "BUAADreamer/llava-en-zh-300k","subset": "en","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"llava_150k_zh": {"hf_hub_url": "BUAADreamer/llava-en-zh-300k","subset": "zh","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"pokemon_cap": {"hf_hub_url": "llamafactory/pokemon-gpt4o-captions","formatting": "sharegpt","columns": {"messages": "conversations","images": "images"}},"mllm_pt_demo": {"hf_hub_url": "BUAADreamer/mllm_pt_demo","formatting": "sharegpt","columns": {"messages": "messages","images": "images"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"oasst_de": {"hf_hub_url": "mayflowergmbh/oasst_de"},"dolly_15k_de": {"hf_hub_url": "mayflowergmbh/dolly-15k_de"},"alpaca-gpt4_de": {"hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"},"openschnabeltier_de": {"hf_hub_url": "mayflowergmbh/openschnabeltier_de"},"evol_instruct_de": {"hf_hub_url": "mayflowergmbh/evol-instruct_de"},"dolphin_de": {"hf_hub_url": "mayflowergmbh/dolphin_de"},"booksum_de": {"hf_hub_url": "mayflowergmbh/booksum_de"},"airoboros_de": {"hf_hub_url": "mayflowergmbh/airoboros-3.0_de"},"ultrachat_de": {"hf_hub_url": "mayflowergmbh/ultra-chat_de"},"dpo_en_demo": {"file_name": "dpo_en_demo.json","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected"}},"dpo_zh_demo": {"file_name": "dpo_zh_demo.json","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected"}},"dpo_mix_en": {"hf_hub_url": "llamafactory/DPO-En-Zh-20k","subset": "en","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected"}},"dpo_mix_zh": {"hf_hub_url": "llamafactory/DPO-En-Zh-20k","subset": "zh","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected"}},"ultrafeedback": {"hf_hub_url": "llamafactory/ultrafeedback_binarized","ms_hub_url": "llamafactory/ultrafeedback_binarized","ranking": true,"columns": {"prompt": "instruction","chosen": "chosen","rejected": "rejected"}},"rlhf_v": {"hf_hub_url": "llamafactory/RLHF-V","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected","images": "images"}},"vlfeedback": {"hf_hub_url": "Zhihui/VLFeedback","ranking": true,"formatting": "sharegpt","columns": {"messages": "conversations","chosen": "chosen","rejected": "rejected","images": "images"}},"orca_pairs": {"hf_hub_url": "Intel/orca_dpo_pairs","ranking": true,"columns": {"prompt": "question","chosen": "chosen","rejected": "rejected","system": "system"}},"hh_rlhf_en": {"script_url": "hh_rlhf_en","ranking": true,"columns": {"prompt": "instruction","chosen": "chosen","rejected": "rejected","history": "history"}},"nectar_rm": {"hf_hub_url": "AstraMindAI/RLAIF-Nectar","ms_hub_url": "AI-ModelScope/RLAIF-Nectar","ranking": true},"orca_dpo_de": {"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de","ranking": true},"kto_en_demo": {"file_name": "kto_en_demo.json","formatting": "sharegpt","columns": {"messages": "messages","kto_tag": "label"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"kto_mix_en": {"hf_hub_url": "argilla/kto-mix-15k","formatting": "sharegpt","columns": {"messages": "completion","kto_tag": "label"},"tags": {"role_tag": "role","content_tag": "content","user_tag": "user","assistant_tag": "assistant"}},"ultrafeedback_kto": {"hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto","ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto","columns": {"prompt": "prompt","response": "completion","kto_tag": "label"}},"wiki_demo": {"file_name": "wiki_demo.txt","columns": {"prompt": "text"}},"c4_demo": {"file_name": "c4_demo.json","columns": {"prompt": "text"}},"refinedweb": {"hf_hub_url": "tiiuae/falcon-refinedweb","columns": {"prompt": "content"}},"redpajama_v2": {"hf_hub_url": "togethercomputer/RedPajama-Data-V2","columns": {"prompt": "raw_content"},"subset": "default"},"wikipedia_en": {"hf_hub_url": "olm/olm-wikipedia-20221220","ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220","columns": {"prompt": "text"}},"wikipedia_zh": {"hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered","ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered","columns": {"prompt": "completion"}},"pile": {"hf_hub_url": "monology/pile-uncopyrighted","ms_hub_url": "AI-ModelScope/pile","columns": {"prompt": "text"}},"skypile": {"hf_hub_url": "Skywork/SkyPile-150B","ms_hub_url": "AI-ModelScope/SkyPile-150B","columns": {"prompt": "text"}},"fineweb": {"hf_hub_url": "HuggingFaceFW/fineweb","columns": {"prompt": "text"}},"fineweb_edu": {"hf_hub_url": "HuggingFaceFW/fineweb-edu","columns": {"prompt": "text"}},"the_stack": {"hf_hub_url": "bigcode/the-stack","ms_hub_url": "AI-ModelScope/the-stack","columns": {"prompt": "content"}},"starcoder_python": {"hf_hub_url": "bigcode/starcoderdata","ms_hub_url": "AI-ModelScope/starcoderdata","columns": {"prompt": "content"},"folder": "python"}
}

相关文章:

【llama_factory】qwen2_vl训练与批量推理

训练llama factory配置文件 文件:examples/train_lora/qwen2vl_lora_sft.yaml ### model model_name_or_path: qwen2_vl/model_72b trust_remote_code: true### method stage: sft do_train: true finetuning_type: lora lora_target: all### dataset dataset: ca…...

wpa_cli命令使用记录

wpa_cli可以用于查询当前状态、更改配置、触发事件和请求交互式用户输入。具体来说,它可以显示当前的认证状态、选择的安全模式、dot11和dot1x MIB等,并可以配置一些变量,如EAPOL状态机参数。此外,wpa_cli还可以触发重新关联和IEE…...

【Uniapp-Vue3】页面生命周期onLoad和onReady

一、onLoad函数 onLoad在页面载入时触发,多用于页面跳转时进行参数传递。 我们在跳转的时候传递参数name和age: 接受参数: import {onLoad} from "dcloudio/uni-app"; onLoad((e)>{...}) 二、onReady函数 页面生命周期函数中的onReady其…...

《C++11》并发库:简介与应用

在C11之前,C并没有提供原生的并发支持。开发者通常需要依赖于操作系统的API(如Windows的CreateThread或POSIX的pthread_create)或者第三方库(如Boost.Thread)来创建和管理线程。这些方式存在以下几个问题: …...

LeetCode - #183 Swift 实现查询未下订单的客户

网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...

HTML拖拽功能(纯html5+JS实现)

1、HTML拖拽--单元行拖动 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><…...

mysql 等保处理,设置wait_timeout引发的问题

&#x1f468;‍⚕ 主页&#xff1a; gis分享者 &#x1f468;‍⚕ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕ 收录于专栏&#xff1a;运维工程师 文章目录 前言问题处理 前言 系统部署完成后&#xff0c;客户需要做二级等保&…...

7.STM32F407ZGT6-RTC

参考&#xff1a; 1.正点原子 前言&#xff1a; RTC实时时钟是很基本的外设&#xff0c;用来记录绝对时间。做个总结&#xff0c;达到&#xff1a; 1.学习RTC的原理和概念。 2.通过STM32CubeMX快速配置RTC。 27.1 RTC 时钟简介 STM32F407 的实时时钟&#xff08;RTC&#xf…...

重写(补充)

大家好&#xff0c;今天我们把剩下一点重写内容说完&#xff0c;来看。 [重写的设计规则] 对于已经投入使用的类,尽量不要进行修政 &#xff0c;最好的方式是:重新定义一个新的类,来重复利用其中共性的内容 我们不该在原来的类上进行修改&#xff0c;因为原来的类,可能还有用…...

30分钟内搭建一个全能轻量级springboot 3.4 + 脚手架 <3>5分钟集成好druid并使用druid自带监控工具监控sql请求

快速导航 快速导航 <1> 5分钟快速创建一个springboot web项目 <2> 5分钟集成好最新版本的开源swagger ui&#xff0c;并使用ui操作调用接口 <3> 5分钟集成好druid并使用druid自带监控工具监控sql请求 <4> 5分钟集成好mybatisplus并使用mybatisplus g…...

【C#深度学习之路】如何使用C#实现Yolo8/11 Segment 全尺寸模型的训练和推理

【C#深度学习之路】如何使用C#实现Yolo8/11 Segment 全尺寸模型的训练和推理 项目背景项目实现推理过程训练过程 项目展望写在最后项目下载链接 本文为原创文章&#xff0c;若需要转载&#xff0c;请注明出处。 原文地址&#xff1a;https://blog.csdn.net/qq_30270773/article…...

Oracle 分区索引简介

目录 一. 什么是分区索引二. 分区索引的种类2.1 局部分区索引&#xff08;Local Partitioned Index&#xff09;2.2 全局分区索引&#xff08;Global Partitioned Index&#xff09; 三. 分区索引的创建四. 分区索引查看4.1 USER_IND_COLUMNS 表4.2 USER_INDEXES 表 五. 分区索…...

【科技赋能未来】NDT2025第三届新能源数字科技大会全面启动!

随着我国碳达峰目标、碳中和目标的提出&#xff0c;以及经济社会的发展进步&#xff0c;以风电、光伏发电为代表的新能源行业迎来巨大发展机遇&#xff0c;成为未来绿色经济发展的主要趋势和方向。 此外&#xff0c;数字化技术的不断发展和创新&#xff0c;其在新能源领域的应…...

Broker收到消息之后如何存储

1.前言 此文章是在儒猿课程中的学习笔记&#xff0c;感兴趣的想看原来的课程可以去咨询儒猿课堂《从0开始带你成为RocketMQ高手》&#xff0c;我本人觉得这个作者还是不错&#xff0c;都是从场景来进行分析&#xff0c;感觉还是挺适合我这种小白的。这块主要都是我自己的学习笔…...

Mysql--实战篇--SQL优化(查询优化器,常用的SQL优化方法,执行计划EXPLAIN,Mysql性能调优,慢日志开启和分析等)

一、查询优化 1、查询优化器 (Query Optimizer) MySQL查询优化器&#xff08;Query Optimizer&#xff09;是MySQL数据库管理系统中的一个关键组件&#xff0c;负责分析和选择最有效的执行计划来执行SQL查询。查询优化器的目标是尽可能减少查询的执行时间和资源消耗&#xff…...

BERT与CNN结合实现糖尿病相关医学问题多分类模型

完整源码项目包获取→点击文章末尾名片&#xff01; 使用HuggingFace开发的Transformers库&#xff0c;使用BERT模型实现中文文本分类&#xff08;二分类或多分类&#xff09; 首先直接利用transformer.models.bert.BertForSequenceClassification()实现文本分类 然后手动实现B…...

rabbitmqp安装延迟队列

在RabbitMQ中&#xff0c;延迟队列是一种特殊的队列类型。当消息被发送到此类队列后&#xff0c;不会立即投递给消费者&#xff0c;而是会等待预设的一段时间&#xff0c;待延迟期满后才进行投递。这种队列在多种场景下都极具价值&#xff0c;比如可用于处理需要在特定时间触发…...

深入探讨DICOM医学影像中的MPPS服务及其具体实现

深入探讨DICOM医学影像中的MPPS服务及其具体实现 1. 引言 在医疗影像的管理和传输过程中&#xff0c;DICOM&#xff08;数字影像和通信医学&#xff09;标准发挥着至关重要的作用。除了DICOM影像的存储和传输&#xff08;如影像存储SCP和影像传输SCP&#xff09;&#xff0c;…...

集合帖:区间问题

一、AcWing 803&#xff1a;区间合并 &#xff08;1&#xff09;题目来源&#xff1a;https://www.acwing.com/problem/content/805/ &#xff08;2&#xff09;算法代码&#xff1a;https://blog.csdn.net/hnjzsyjyj/article/details/145067059 #include <bits/stdc.h>…...

C#,入门教程(27)——应用程序(Application)的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(26)——数据的基本概念与使用方法https://blog.csdn.net/beijinghorn/article/details/124952589 一、什么是应用程序 Application&#xff1f; 应用程序是编程的结果。一般把代码经过编译&#xff08;等&#xff09;过程&#…...

迅翼SwiftWing | ROS 固定翼开源仿真平台正式发布!

经过前期内测调试&#xff0c;ROS固定翼开源仿真平台今日正式上线&#xff01;现平台除适配PX4ROS环境外&#xff0c;也已实现APROS环境下的单机飞行控制仿真适配。欢迎大家通过文末链接查看项目地址以及具体使用手册。 1 平台简介 ROS固定翼仿真平台旨在实现固定翼无人机决策…...

CSS 样式 box-sizing: border-box; 详细解读

box-sizing是 CSS 中的一个属性&#xff0c;用于控制元素的盒模型计算方式。border-box值表示元素的宽度和高度将包括内边距&#xff08;padding&#xff09;和边框&#xff08;border&#xff09;&#xff0c;而不仅仅是内容的宽度和高度。这意味着当你为元素设置宽度和高度时…...

FLASK创建下载

html用a标签 <!-- Button to download the image --> <a href"{{ url_for(download_file, filenameimage.png) }}"><button>Download Image</button> </a> 后端&#xff1a;url_for双大括号即是用来插入变量到模板中的语法。也就是绑…...

漫话架构师|什么是系统架构设计师(开篇)

~犬&#x1f4f0;余~ “我欲贱而贵&#xff0c;愚而智&#xff0c;贫而富&#xff0c;可乎&#xff1f; 曰&#xff1a;其唯学乎” 关注犬余&#xff0c;共同进步 技术从此不孤单...

Web Socket

Web Socket ‌WebSocket‌是一种基于TCP的网络通信协议&#xff0c;允许客户端和服务器之间建立全双工&#xff08;双向&#xff09;通信通道。WebSocket通过HTTP协议进行握手&#xff0c;建立连接后&#xff0c;客户端和服务器可以在同一个连接上同时发送和接收数据&#xff0…...

JavaSE学习心得(反射篇)

反射 前言 获取class对象的三种方式 利用反射获取构造方法 利用反射获取成员变量 利用反射获取成员方法 练习 保存信息 跟配置文件结合动态创建 前言 接上期文章&#xff1a;JavaSE学习心得&#xff08;多线程与网络编程篇&#xff09; 教程链接&#xff1a;黑马…...

使用FRP进行内网穿透

一、基本概念 内网穿透&#xff1a;它是一种网络技术或方法&#xff0c;旨在允许外部网络&#xff08;如互联网&#xff09;访问位于内部网络&#xff08;内网&#xff09;中的设备或服务。由于内部网络通常处于NAT&#xff08;网络地址转换&#xff09;、防火墙或其他安全机制…...

长安“战疫”网络安全公益赛的一些随想

起因 今年刚进入大学&#xff0c;开始带校队&#xff0c;为了培养校队新成员&#xff0c;也就一直计划着和当地的一些高校合作交流&#xff0c;但是由于种种原因一直被搁置下来。正巧学校信息中心和四叶草有一个培训项目的合作&#xff0c;学校的网安协会也算是沾了光成为了培…...

flutter 安卓端打包

在 Flutter 中打包 Android 应用程序是一个相对简单的过程。你可以使用 Flutter 的命令行工具来构建并打包你的 APK 或 AAB&#xff08;Android App Bundle&#xff09;。以下是打包 Flutter Android 应用的步骤&#xff1a; 1. 安装 Flutter 环境 确保你已经安装了 Flutter …...

Cesium中的CustomDataSource 详解

Cesium CustomDataSource 详解 在 Cesium 中&#xff0c;CustomDataSource 是一个强大的类&#xff0c;用于处理自定义的地理数据。它提供了一种方法&#xff0c;可以通过程序方式添加、管理和更新动态的地理实体&#xff0c;而无需依赖外部数据格式&#xff08;如 GeoJSON 或…...