当前位置: 首页 > news >正文

人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)

Softmax回归听名字,依然好像是做回归任务的算法,但其实它是去做多分类任务的算法。

  1. 篮球比赛胜负是二分类,足球比赛胜平负就是多分类

  2. 识别手写数字0和1是二分类,识别手写数字0-9就是多分类

Softmax回归算法是一种用于多分类问题的机器学习算法。它可以帮助我们预测一个样本属于哪一类,比如预测一张照片中的动物是狗、猫还是鸟。

一、加载整个数据集

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
​
#加载鸢尾花数据集
iris = datasets.load_iris()
x=iris.data
y=iris.target
​
print("多元的参数集是:")
print(x)
print("结果集是:")
print(y)

二、将数据集拆分为训练集和测试集,测试集占20%,训练集占80%

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

三、创建一个逻辑回归的对象

#创建一个逻辑回归的对象,这里的逻辑回归会根据我们的数据决定是用二分类还是用多分类
lr=LogisticRegression()

四、使用训练集训练模型

lr.fit(x_train,y_train)

五、使用测试集进行结果的预测

y_pred=lr.predict(x_test)

六、打印模型的准确率

print("准确率:%.2f" %accuracy_score(y_test,y_pred))
多元的参数集是:
[[5.1 3.5 1.4 0.2][4.9 3.  1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3.  5.2 2.3][6.3 2.5 5.  1.9][6.5 3.  5.2 2. ][6.2 3.4 5.4 2.3][5.9 3.  5.1 1.8]]
结果集是:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
准确率:0.97

注意:

1、mluti_class的参数,如果是ovr是进行二分类转换,如果是multinomial是进行softmax回归做多分类,由于目前我们的y值是单标签,要么是0,要么是1,要么是2,因此可以默认进行多分类。

# lr=LogisticRegression(multi_class='ovr')   #多分类转换成了多个二分类
# lr=LogisticRegression(multi_class='multinomial')   #Softmax回归做多分类

2、最大迭代次数:max_iter=1000,默认是执行100次收敛,调整参数100次。

如果不添加这个参数,可能会报如下错误:收敛的警告,迭代100次之后还没有达到完全的收敛,如果将参数改为1000,则精度会有所提升。

相关文章:

人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)

Softmax回归听名字,依然好像是做回归任务的算法,但其实它是去做多分类任务的算法。 篮球比赛胜负是二分类,足球比赛胜平负就是多分类 识别手写数字0和1是二分类,识别手写数字0-9就是多分类 Softmax回归算法是一种用于多分类问题…...

多包单仓库(monorepo)实现形式

目录 背景 需求和方案 从0开始搭建一个Monorepo项目 创建 配置全局公共样式 配置全局公共组件 方式1:不需要独立发布的组件包,只在当前项目的子项目中使用 方式2:需要独立发布和版本维护的包 子项目的独立构建和部署 总结 Monorepo优势 便于代码维护、管理 支持…...

Java冒泡排序算法之:变种版

什么是冒泡排序算法? 冒泡排序是一种简单的排序算法,通过多次遍历待排序的数组,逐步将最大的(或最小的)元素“冒泡”到数组的一端。它以其操作过程类似气泡从水底冒至水面而得名。 冒泡排序的工作原理 比较相邻元素&…...

AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%

“AAPM: Large Language Model Agent-based Asset Pricing Models” 论文地址:https://arxiv.org/pdf/2409.17266v1 Github地址:https://github.com/chengjunyan1/AAPM 摘要 这篇文章介绍了一种利用LLM代理的资产定价模型(AAPM)…...

Spring常见知识

1、什么是spring的ioc? 其实就是控制反转,提前定义了一个bean,到时候使用的时候直接autowire就可以了。目的是减低计算机代码之间的耦合度。 创建三个文件,分别是Bean的定义、Bean的使用、Bean的配置。 IOC通过将对象创建和管理…...

计算机网络的五层协议

计算机网络的五层协议 ‌计算机网络的五层协议模型包括物理层、数据链路层、网络层、传输层和应用层,每一层都有其特定的功能和相关的协议。‌‌1 ‌物理层‌:负责传输原始的比特流,通过线路(有线或无线)将数据转换为…...

Bluetooth LE Audio - 蓝牙无线音频新应用 (上)

SIG联盟(Bluetooth Special Interest Group)自2020年开始推广新的LE Audio,在穿戴式装置掀起一股热潮,各个品牌商、制造商、第三方软件商都积极的寻找新的LE Audio规格究竟能提供什么样的新应用。究竟LE Audio如何改变你我的生活、…...

如何快速准备数学建模?

前言 大家好,我是fanstuck。数学建模不仅是解决复杂现实问题的一种有效工具,也是许多学科和行业中的关键技能。从工程、经济到生物、环境等多个领域,数学建模为我们提供了将实际问题转化为数学形式,并利用数学理论和方法进行求解的强大能力。然而,对于许多初学者而言,如…...

如何在linux系统上完成定时开机和更新github端口的任务

任务背景 1.即使打开代理,有的时候github去clone比较大的文件时也会出问题。这时需要每小时更新一次github的host端口; 2.马上要放假,想远程登录在学校的台式电脑,但学校内网又不太好穿透。退而求其次,选择定时启动电…...

Jupyter notebook中运行dos指令运行方法

Jupyter notebook中运行dos指令运行方法 目录 Jupyter notebook中运行dos指令运行方法一、DOS(磁盘操作系统)指令介绍1.1 DOS介绍1.2 DOS指令1.2.1 DIR - 显示当前目录下的文件和子目录列表。1.2.2 CD 或 CHDIR - 改变当前目录1.2.3 使用 CD .. 可以返回上一级目录1…...

探索 Linux:(一)介绍Linux历史与Linux环境配置

探索 Linux:(一)介绍Linux历史与Linux环境配置 一. 计算机与操作系统的历史1.1计算机的历史1.2操作系统的历史 二、Unix 操作系统的历史三、Linux 与安卓的关系3.1Linux 与安卓的关系3.2安卓的历史 四、Linux 简单介绍五、Linux 环境安装5.1 虚拟机5.2 直…...

前端【2】html添加样式、CSS选择器

一、为html添加样式的三种方法 1、内部样式 2、外部样式 3、行内样式 二、css的使用--css选择器 1、css基本选择器 元素选择器 属性选择器 id选择器 class/类选择器 通配符选择器 2、群组选择器-多方面筛选 3、关系选择器 后代选择器【包含选择器】 子元素选择器…...

Yolov8 目标检测剪枝学习记录

最近在进行YOLOv8系列的轻量化,目前在网络结构方面的优化已经接近极限了,所以想要学习一下模型剪枝是否能够进一步优化模型的性能 这里主要参考了torch-pruning的基本使用,v8模型剪枝,Jetson nano部署剪枝YOLOv8 下面只是记录一个…...

LeDeCo:AI自动化排版、设计、美化海报

1.简介 平面设计是一门艺术学科,致力于创造吸引注意力和有效传达信息的视觉内容。今天,创造视觉上吸引人的设计完全依赖于具有艺术创造力和技术专长的人类设计师,他们巧妙地整合多模态图形元素,这是一个复杂而耗时的过程&#xf…...

Flink CDC解决数据库同步,异常情况下增量、全量问题

Flink 1.11 引入了 Flink SQL CDC,CDC 能给我们数据和业务间能带来什么变化?本文由 Apache Flink PMC,阿里巴巴技术专家伍翀 (云邪)分享,内容将从传统的数据同步方案,基于 Flink CDC 同步的解决方案以及更多…...

01、flink的原理和安装部署

flink中主要有两个进程,分别是JobMManager和TaskManager,当然了根据flink的部署和运行环境不同,会有一些不同,但是主要的功能是类似的,下面我会讲下聊下,公司用的多的部署方式,基于yarn集群的部…...

美图脱掉“复古外衣”,在AI浪潮中蜕变

"人工智能就像电力一样,如果你的竞争对手正在使用它,你也需要使用它,否则你就会失去竞争力",斯坦福大学教授和谷歌前首席科学家安德鲁恩格尔曾这样说到。 而近日拉开序幕的消费电子风向标——科技贸易展国际消费电子展…...

sqlalchemy The transaction is active - has not been committed or rolled back.

连接池参考 参考:https://blog.csdn.net/SunJW_2017/article/details/129332393 1、因为使用了连接池,没有释放 2、解决方法: from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session from gree…...

47.数据绑定的PropertyChanged C#例子 WPF例子

[CallerMemberName] string propertyName null 这段代码中的 [CallerMemberName] 是一个特性(Attribute),它应用于 propertyName 参数。这个特性的作用是,在编译时,如果调用 OnPropertyChanged 方法时没有显式提供 pr…...

网络安全 | Web安全常见漏洞和防护经验策略

关注:CodingTechWork 引言 OWASP (Open Web Application Security Project) Top 10是Web应用最常见的安全风险集合,帮助开发人员和安全专家识别和防止最严重的网络安全问题。以下是基于OWASP Top 10的Web安全防护经验策略与规则集。Web开发者必须对潜在…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法

用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...