人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)
Softmax回归听名字,依然好像是做回归任务的算法,但其实它是去做多分类任务的算法。
-
篮球比赛胜负是二分类,足球比赛胜平负就是多分类
-
识别手写数字0和1是二分类,识别手写数字0-9就是多分类
Softmax回归算法是一种用于多分类问题的机器学习算法。它可以帮助我们预测一个样本属于哪一类,比如预测一张照片中的动物是狗、猫还是鸟。
一、加载整个数据集
from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score #加载鸢尾花数据集 iris = datasets.load_iris() x=iris.data y=iris.target print("多元的参数集是:") print(x) print("结果集是:") print(y)
二、将数据集拆分为训练集和测试集,测试集占20%,训练集占80%
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
三、创建一个逻辑回归的对象
#创建一个逻辑回归的对象,这里的逻辑回归会根据我们的数据决定是用二分类还是用多分类 lr=LogisticRegression()
四、使用训练集训练模型
lr.fit(x_train,y_train)
五、使用测试集进行结果的预测
y_pred=lr.predict(x_test)
六、打印模型的准确率
print("准确率:%.2f" %accuracy_score(y_test,y_pred))
多元的参数集是:
[[5.1 3.5 1.4 0.2][4.9 3. 1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3. 5.2 2.3][6.3 2.5 5. 1.9][6.5 3. 5.2 2. ][6.2 3.4 5.4 2.3][5.9 3. 5.1 1.8]]
结果集是:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
准确率:0.97
注意:
1、mluti_class的参数,如果是ovr是进行二分类转换,如果是multinomial是进行softmax回归做多分类,由于目前我们的y值是单标签,要么是0,要么是1,要么是2,因此可以默认进行多分类。
# lr=LogisticRegression(multi_class='ovr') #多分类转换成了多个二分类
# lr=LogisticRegression(multi_class='multinomial') #Softmax回归做多分类
2、最大迭代次数:max_iter=1000,默认是执行100次收敛,调整参数100次。
如果不添加这个参数,可能会报如下错误:收敛的警告,迭代100次之后还没有达到完全的收敛,如果将参数改为1000,则精度会有所提升。
相关文章:

人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)
Softmax回归听名字,依然好像是做回归任务的算法,但其实它是去做多分类任务的算法。 篮球比赛胜负是二分类,足球比赛胜平负就是多分类 识别手写数字0和1是二分类,识别手写数字0-9就是多分类 Softmax回归算法是一种用于多分类问题…...

多包单仓库(monorepo)实现形式
目录 背景 需求和方案 从0开始搭建一个Monorepo项目 创建 配置全局公共样式 配置全局公共组件 方式1:不需要独立发布的组件包,只在当前项目的子项目中使用 方式2:需要独立发布和版本维护的包 子项目的独立构建和部署 总结 Monorepo优势 便于代码维护、管理 支持…...
Java冒泡排序算法之:变种版
什么是冒泡排序算法? 冒泡排序是一种简单的排序算法,通过多次遍历待排序的数组,逐步将最大的(或最小的)元素“冒泡”到数组的一端。它以其操作过程类似气泡从水底冒至水面而得名。 冒泡排序的工作原理 比较相邻元素&…...

AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%
“AAPM: Large Language Model Agent-based Asset Pricing Models” 论文地址:https://arxiv.org/pdf/2409.17266v1 Github地址:https://github.com/chengjunyan1/AAPM 摘要 这篇文章介绍了一种利用LLM代理的资产定价模型(AAPM)…...
Spring常见知识
1、什么是spring的ioc? 其实就是控制反转,提前定义了一个bean,到时候使用的时候直接autowire就可以了。目的是减低计算机代码之间的耦合度。 创建三个文件,分别是Bean的定义、Bean的使用、Bean的配置。 IOC通过将对象创建和管理…...

计算机网络的五层协议
计算机网络的五层协议 计算机网络的五层协议模型包括物理层、数据链路层、网络层、传输层和应用层,每一层都有其特定的功能和相关的协议。1 物理层:负责传输原始的比特流,通过线路(有线或无线)将数据转换为…...

Bluetooth LE Audio - 蓝牙无线音频新应用 (上)
SIG联盟(Bluetooth Special Interest Group)自2020年开始推广新的LE Audio,在穿戴式装置掀起一股热潮,各个品牌商、制造商、第三方软件商都积极的寻找新的LE Audio规格究竟能提供什么样的新应用。究竟LE Audio如何改变你我的生活、…...
如何快速准备数学建模?
前言 大家好,我是fanstuck。数学建模不仅是解决复杂现实问题的一种有效工具,也是许多学科和行业中的关键技能。从工程、经济到生物、环境等多个领域,数学建模为我们提供了将实际问题转化为数学形式,并利用数学理论和方法进行求解的强大能力。然而,对于许多初学者而言,如…...

如何在linux系统上完成定时开机和更新github端口的任务
任务背景 1.即使打开代理,有的时候github去clone比较大的文件时也会出问题。这时需要每小时更新一次github的host端口; 2.马上要放假,想远程登录在学校的台式电脑,但学校内网又不太好穿透。退而求其次,选择定时启动电…...

Jupyter notebook中运行dos指令运行方法
Jupyter notebook中运行dos指令运行方法 目录 Jupyter notebook中运行dos指令运行方法一、DOS(磁盘操作系统)指令介绍1.1 DOS介绍1.2 DOS指令1.2.1 DIR - 显示当前目录下的文件和子目录列表。1.2.2 CD 或 CHDIR - 改变当前目录1.2.3 使用 CD .. 可以返回上一级目录1…...

探索 Linux:(一)介绍Linux历史与Linux环境配置
探索 Linux:(一)介绍Linux历史与Linux环境配置 一. 计算机与操作系统的历史1.1计算机的历史1.2操作系统的历史 二、Unix 操作系统的历史三、Linux 与安卓的关系3.1Linux 与安卓的关系3.2安卓的历史 四、Linux 简单介绍五、Linux 环境安装5.1 虚拟机5.2 直…...

前端【2】html添加样式、CSS选择器
一、为html添加样式的三种方法 1、内部样式 2、外部样式 3、行内样式 二、css的使用--css选择器 1、css基本选择器 元素选择器 属性选择器 id选择器 class/类选择器 通配符选择器 2、群组选择器-多方面筛选 3、关系选择器 后代选择器【包含选择器】 子元素选择器…...

Yolov8 目标检测剪枝学习记录
最近在进行YOLOv8系列的轻量化,目前在网络结构方面的优化已经接近极限了,所以想要学习一下模型剪枝是否能够进一步优化模型的性能 这里主要参考了torch-pruning的基本使用,v8模型剪枝,Jetson nano部署剪枝YOLOv8 下面只是记录一个…...

LeDeCo:AI自动化排版、设计、美化海报
1.简介 平面设计是一门艺术学科,致力于创造吸引注意力和有效传达信息的视觉内容。今天,创造视觉上吸引人的设计完全依赖于具有艺术创造力和技术专长的人类设计师,他们巧妙地整合多模态图形元素,这是一个复杂而耗时的过程…...
Flink CDC解决数据库同步,异常情况下增量、全量问题
Flink 1.11 引入了 Flink SQL CDC,CDC 能给我们数据和业务间能带来什么变化?本文由 Apache Flink PMC,阿里巴巴技术专家伍翀 (云邪)分享,内容将从传统的数据同步方案,基于 Flink CDC 同步的解决方案以及更多…...

01、flink的原理和安装部署
flink中主要有两个进程,分别是JobMManager和TaskManager,当然了根据flink的部署和运行环境不同,会有一些不同,但是主要的功能是类似的,下面我会讲下聊下,公司用的多的部署方式,基于yarn集群的部…...

美图脱掉“复古外衣”,在AI浪潮中蜕变
"人工智能就像电力一样,如果你的竞争对手正在使用它,你也需要使用它,否则你就会失去竞争力",斯坦福大学教授和谷歌前首席科学家安德鲁恩格尔曾这样说到。 而近日拉开序幕的消费电子风向标——科技贸易展国际消费电子展…...
sqlalchemy The transaction is active - has not been committed or rolled back.
连接池参考 参考:https://blog.csdn.net/SunJW_2017/article/details/129332393 1、因为使用了连接池,没有释放 2、解决方法: from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session from gree…...
47.数据绑定的PropertyChanged C#例子 WPF例子
[CallerMemberName] string propertyName null 这段代码中的 [CallerMemberName] 是一个特性(Attribute),它应用于 propertyName 参数。这个特性的作用是,在编译时,如果调用 OnPropertyChanged 方法时没有显式提供 pr…...
网络安全 | Web安全常见漏洞和防护经验策略
关注:CodingTechWork 引言 OWASP (Open Web Application Security Project) Top 10是Web应用最常见的安全风险集合,帮助开发人员和安全专家识别和防止最严重的网络安全问题。以下是基于OWASP Top 10的Web安全防护经验策略与规则集。Web开发者必须对潜在…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...