当前位置: 首页 > news >正文

TabPFN - 表格数据基础模型

文章目录

    • 一、关于 TabPFN
      • 🌐TabPFN生态系统
    • 二、快速入门🏁
      • 1、安装
      • 2、基本用法
    • 三、使用技巧💡
    • 四、开发🛠️
      • 1、设置环境
      • 2、在提交之前
      • 3、运行测试


一、关于 TabPFN

TabPFN是表格数据的基础模型,它优于传统方法,同时速度显着加快。该存储库包含具有CUDA优化的核心PyTorch实现。

  • github : https://github.com/PriorLabs/TabPFN
  • 官方文档:https://priorlabs.ai/
  • Discord
  • 交互式Colab教程 使用示例和最佳实践
  • 开发者: Prior Labs

🌐TabPFN生态系统

根据您的需求选择正确的TabPFN实现:

  • TabPFN客户端:易于使用的API客户端,用于基于云的推理
  • TabPFN扩展:社区扩展和集成
  • TabPFN(此存储库):本地部署和研究的核心实现

试试我们的交互式Colab教程,快速入门。


二、快速入门🏁

⚠️ **主要更新:2.0版:**通过新的架构和功能完成代码库大修。以前的版本在v1.0.0和pip install tabpfn<2


1、安装

# Simple installation
pip install tabpfn# Local development installation
git clone https://github.com/PriorLabs/TabPFN.git
pip install -e "tabpfn[dev]"

2、基本用法

from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.model_selection import train_test_splitfrom tabpfn import TabPFNClassifier# Load data
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)# Initialize a classifier
clf = TabPFNClassifier()
clf.fit(X_train, y_train)# Predict probabilities
prediction_probabilities = clf.predict_proba(X_test)
print("ROC AUC:", roc_auc_score(y_test, prediction_probabilities[:, 1]))# Predict labels
predictions = clf.predict(X_test)
print("Accuracy", accuracy_score(y_test, predictions))

三、使用技巧💡

TabPFN旨在以最少的预处理开箱即用:

  • 无需预处理:TabPFN在内部处理规范化
  • 类别变量:使用数字编码(浮点数表示有序,普通编码器表示无序)
  • 自动集成:控制与n_estimators
  • 独立预测:测试样本可以单独或批量预测
  • 可微:核心模型是可微的(预处理除外)
  • GPU支持:使用device='cuda'进行GPU加速

四、开发🛠️


1、设置环境

python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
git clone https://github.com/PriorLabs/TabPFN.git
cd tabpfn
pip install -e ".[dev]"
pre-commit install

2、在提交之前

pre-commit run --all-files

3、运行测试

pytest tests/

2025-01-06(五)

相关文章:

TabPFN - 表格数据基础模型

文章目录 一、关于 TabPFN&#x1f310;TabPFN生态系统 二、快速入门&#x1f3c1;1、安装2、基本用法 三、使用技巧&#x1f4a1;四、开发&#x1f6e0;️1、设置环境2、在提交之前3、运行测试 一、关于 TabPFN TabPFN是表格数据的基础模型&#xff0c;它优于传统方法&#x…...

AOF日志:宕机了Redis如何避免数据丢失?

文章目录 AOF 日志是如何实现的&#xff1f;三种写回策略日志文件太大了怎么办&#xff1f;AOF 重写会阻塞吗?小结每课一问 更多redis相关知识 如果有人问你&#xff1a;“你会把 Redis 用在什么业务场景下&#xff1f;”我想你大概率会说&#xff1a;“我会把它当作缓存使用&…...

MAC上安装Octave

1. 当前最新版Octave是9.3版本&#xff0c;需要把mac os系统升级到14版本&#xff08;本人之前的版本是10版本&#xff09; https://wiki.octave.org/Octave_for_macOS octave的历史版本参考此文档&#xff1a;Octave for macOS (outdated) - Octavehttps://wiki.octave.org/Oc…...

C 语言中二维数组的退化

目录 1. 一维数组的退化 2.字符串数组的退化 3. 二维数组的退化 3.1 为什么退化为 int (*)[4] 而不是 int **&#xff1f; 3.2举例说明 3.3 .总结 在 C 语言中&#xff0c;数组名在大多数情况下会退化为指向其第一个元素的指针&#xff0c;这种机制称为数组退化&#xf…...

Notion 推出捏脸应用 | Deving Weekly #15

CEF-Detector-X 现在 Chromium 占据了桌面应用的大壁江山&#xff0c;典型的有 Electron 框架&#xff0c;底层就是基于 Chromium 内核&#xff0c;上百 M 的臃肿包体积一直别人诟病。 CEF-Detector-X 可以检测你电脑有多少个 基于 Chromium 应用&#xff0c;并且会生成一份「…...

C# Linq 查询

1.Linq 查询表达式基础 Linq 查询应用程序始终将源数据视为 IEnumerable<T> 或 IQueryable<T> 集合。 LINQ查询表达式包含8个基本子句,分别为from、select、group、where、orderby、join、let和into。 子 句备注from指定数据源和范围变量select指定当执行查询…...

ES7【2016】、ES8【2017】新增特性

ES7【2016】新增特性 幂指数操作符 在ES7【2016】中新增了幂指数操作&#xff0c;幂指数操作符是**。它用于指数计算 基本语法&#xff1a;baseValue ** exponent 参数说明&#xff1a;baseValue是基数&#xff0c;exponent是指数。 let base 2; let exponent 4; let resul…...

64细分步进电机驱动器TMC2209

封装和丝印 典型电路1 典型电路2 应用 兼容设计升级 3D 打印机 打印机、POS 办公和家庭自动化 纺织、缝纫机 闭路电视&#xff0c; 安保 ATM&#xff0c; 现金回收机 暖 通 空调 电池供电设备 特点和优势 2 相步进电机&#xff0c;线圈电流&#xff08;峰值&#xff09;高达…...

C# 获取PDF文档中的字体信息(字体名、大小、颜色、样式等

在设计和出版行业中&#xff0c;字体的选择和使用对最终作品的质量有着重要影响。然而&#xff0c;有时我们可能会遇到包含未知字体的PDF文件&#xff0c;这使得我们无法准确地复制或修改文档。获取PDF中的字体信息可以解决这个问题&#xff0c;让我们能够更好地处理这些文件。…...

linux 安装PrometheusAlert配置钉钉告警

在 Linux 上安装 PrometheusAlert 并配置钉钉告警的步骤如下: 1. 准备工作 钉钉机器人: 在钉钉群中创建一个机器人,获取 Webhook URL。示例 Webhook URL:https://oapi.dingtalk.com/robot/send?access_token=your_dingtalk_token。PrometheusAlert 安装包: 从 Prometheus…...

【华为路由/交换机的ssh远程设置】

华为路由/交换机的ssh远程设置 R1&#xff08;client&#xff09;&#xff1a;10.1.1.1 R2&#xff08;server&#xff09;&#xff1a;10.1.1.2 R2服务端配置&#xff1a; 生成本机密钥 查看生成的密钥 设置AAA授权验证方式&#xff0c;并设置支持SSH协议 创建本地用户&…...

性能测试 - Locust WebSocket client

Max.Bai 2024.10 0. 背景 Locust 是性能测试工具&#xff0c;但是默认只支持http协议&#xff0c;就是默认只有http的client&#xff0c;需要其他协议的测试必须自己扩展对于的client&#xff0c;比如下面的WebSocket client。 1. WebSocket test Client “”“ Max.Bai W…...

html中鼠标位置信息

pageX&#xff1a;鼠标距离页面的最左边的距离&#xff0c;包括滚动条的长度。clientX&#xff1a;鼠标距离浏览器视口的左距离&#xff0c;不包括滚动条。offsetX&#xff1a;鼠标到事件源左边的距离。movementX&#xff1a;鼠标这次触发的事件的位置相对于上一次触发事件的位…...

kubernetes v1.29.XX版本HPA、KPA、VPA并压力测试

序言&#xff1a; 在大型电商、购物、直播活动期间&#xff0c;对于火爆流量的激增&#xff0c;如何保障业务稳定并且做到资源不浪费&#xff0c;自动回收。 场景&#xff1a;kubernetes 原生容器化承载业务流量&#xff08;非云环境&#xff09; 方案&#xff1a;kubernetes自…...

flutter 常用UI组件

文章目录 1. Toast 文本提示框oktoastbot_toast2. loading 加载窗flutter_easyloading3. 对话框gex dialog4.下拉刷新pull_to_refresh5. pop 窗custom_pop_up_menu6. pin code 密码框pinput7. 二维码qr_flutter8. swiper 滚动组件carousel_sliderflutter_swiper_view9. Badge 角…...

HarmonyOS NEXT应用开发边学边玩系列:从零实现一影视APP (五、电影详情页的设计实现)

在上一篇文章中&#xff0c;完成了电影列表页的开发。接下来&#xff0c;将进入电影详情页的设计实现阶段。这个页面将展示电影的详细信息&#xff0c;包括电影海报、评分、简介以及相关影人等。将使用 HarmonyOS 提供的常用组件&#xff0c;并结合第三方库 nutpi/axios 来实现…...

hive表修改字段类型没有级连导致历史分区报错

一&#xff1a;问题背景 修改hive的分区表时有级连概念&#xff0c;指字段的最新状态&#xff0c;默认只对往后的分区数据生效&#xff0c;而之前的分区保留历史元数据状态。好处就是修改语句的效率很快&#xff0c;坏处就是如果历史分区的数据还有用&#xff0c;那就回发生分…...

云上贵州多彩宝荣获仓颉社区先锋应用奖 | 助力数字政务新突破

在信息技术应用创新的浪潮中&#xff0c;仓颉社区吸引了众多企业和开发者的积极参与&#xff0c;已有多个应用成功落地&#xff0c;展现出蓬勃的创新活力。仓颉编程语言精心遴选了在社区建设、应用创新、开源共建、技术布道等方面做出突出贡献的优秀项目应用&#xff0c;并颁发…...

JS宏进阶:JS宏中的文件系统FileSystem

FileSystem对象中包含文件和文件夹的一些基本和常见的操作接口。比如&#xff1a;判断路径是否存在、创建文件夹、创建文件、读取文件等等。他的出现可以取代文件流对txt或csv等文件的操作。官方文档网址&#xff1a;https://open.wps.cn/previous/docs/client/wpsLoad&#xf…...

XML序列化和反序列化的学习

1、基本介绍 在工作中&#xff0c;经常为了调通上游接口&#xff0c;从而对请求第三方的参数进行XML序列化&#xff0c;这里常使用的方式就是使用JAVA扩展包中的相关注解和类来实现xml的序列化和反序列化。 2、自定义工具类 import javax.xml.bind.JAXBContext; import javax.x…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...