深度学习在文本情感分析中的应用
引言
情感分析是自然语言处理(NLP)中的一个重要任务,旨在识别和提取文本中的主观信息。随着深度学习技术的发展,我们可以使用深度学习模型来提高情感分析的准确性和效率。本文将介绍如何使用深度学习进行文本情感分析,并提供一个实践案例。
环境准备
首先,确保你的环境中安装了以下工具:
- Python 3.x
- TensorFlow 2.x 或 PyTorch
- NumPy
- Pandas(用于数据处理)
- scikit-learn(用于模型评估)
你可以通过以下命令安装所需的库:
pip install tensorflow pandas scikit-learn
数据准备
我们将使用IMDB电影评论数据集,这是一个广泛用于情感分析的数据集。
import pandas as pd
from sklearn.model_selection import train_test_split# 加载数据集
data = pd.read_csv('imdb.csv')# 数据预处理
# 假设数据集中包含'review'和'sentiment'两列X = data['review'].values
y = data['sentiment'].values# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
文本向量化
在训练模型之前,我们需要将文本数据转换为模型可以理解的数值形式。
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences# 文本向量化
tokenizer = Tokenizer(num_words=10000)
tokenizer.fit_on_texts(X_train)X_train_seq = tokenizer.texts_to_sequences(X_train)
X_test_seq = tokenizer.texts_to_sequences(X_test)# 填充序列以确保统一的长度
X_train_pad = pad_sequences(X_train_seq, maxlen=200)
X_test_pad = pad_sequences(X_test_seq, maxlen=200)
构建模型
我们将构建一个简单的循环神经网络(RNN)模型来进行情感分析。
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Densemodel = Sequential()
model.add(Embedding(10000, 128, input_length=200))
model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
训练模型
接下来,我们将训练模型。
model.fit(X_train_pad, y_train, epochs=3, validation_data=(X_test_pad, y_test))
评估模型
最后,我们将在测试集上评估模型的性能。
loss, accuracy = model.evaluate(X_test_pad, y_test, verbose=0)
print('Test accuracy:', accuracy)
结论
通过上述步骤,我们构建并训练了一个用于文本情感分析的深度学习模型。虽然这是一个基础的例子,但它展示了深度学习在处理NLP任务中的潜力。随着模型复杂度的增加和数据量的扩大,深度学习模型的性能可以得到显著提升。
这篇文章提供了一个深度学习在文本情感分析中的应用案例,包括环境准备、数据准备、文本向量化、模型构建、训练和评估等步骤,适合对NLP感兴趣的初学者或实践者。
相关文章:
深度学习在文本情感分析中的应用
引言 情感分析是自然语言处理(NLP)中的一个重要任务,旨在识别和提取文本中的主观信息。随着深度学习技术的发展,我们可以使用深度学习模型来提高情感分析的准确性和效率。本文将介绍如何使用深度学习进行文本情感分析,…...
【大模型系列篇】数字人音唇同步模型——腾讯开源MuseTalk
之前有一期我们体验了阿里开源的半身数字人项目EchoMimicV2,感兴趣的小伙伴可跳转至《AI半身数字人开箱体验——开源项目EchoMimicV2》,今天带大家来体验腾讯开源的数字人音唇同步模型MuseTalk。 MuseTalk 是一个实时高品质音频驱动的唇形同步模型&#…...
Formality:参考设计/实现设计以及顶层设计
相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482 Formality存在两个重要的概念:参考设计/实现设计和顶层设计,本文就将对此进行详细阐述。参考设计/实现设计是中两个重要的全局概念&am…...
RPA赋能内容创作:打造小红书入门词语图片的全自动化流程
🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 用RPA全自动化批量生产【入门词语】图片做小红书商单,保姆级工具开发教程 最近由…...
RPC 源码解析~Apache Dubbo
解析 RPC(远程过程调用)的源码可以帮助你深入理解其工作原理和实现细节。为了更好地进行源码解析,我们选择一个流行的 RPC 框架——Apache Dubbo 作为示例。Dubbo 是一个高性能、轻量级的开源 Java RPC 框架,广泛应用于企业级应用…...
VS Code--常用的插件
原文网址:VS Code--常用的插件_IT利刃出鞘的博客-CSDN博客 简介 本文介绍VS Code(Visual Studio Code)常用的插件。 插件的配置 默认情况下,插件会放到这里:C:\Users\xxx\.vscode\extensions 修改插件位置的方法 …...
深度学习 Pytorch 张量的索引、分片、合并以及维度调整
张量作为有序的序列,也是具备数值索引的功能,并且基本索引方法和python原生的列表、numpy中的数组基本一致。 不同的是,pytorch中还定义了一种采用函数来进行索引的方式。 作为pytorch中的基本数据类型,张量既具备了列表、数组的基…...
神州数码--制作wifi
防火墙: #ip vrouter trust-vr#router ospf 1#router-id 8.8.8.8#network 10.0.0.0/30 area 0.0.0.0#network 10.0.0.4/30 area 0.0.0.0#network 10.0.0.8/30 area 0.0.0.0 交换机: #vlan 10;50#ip add 192.168.10.1 255.255.255.0#int vlan 50#ip add 192.168.50.…...
Web前端开发技术之HTMLCSS知识点总结
学习路线 一、新闻网界面1. 代码示例2. 效果展示3. 知识点总结3.1 HTML标签和字符实体3.2 超链接、颜色描述与标题元素3.3 关于图片和视频标签:3.4 CSS引入方式3.5 CSS选择器优先级 二、flex布局1. 代码示例2. 效果展示3. 知识点总结3.1 span标签和flex容器的区别3.…...
客户案例:致远OA与携程商旅集成方案
一、前言 本项目原型客户公司创建于1992年,主要生产并销售包括糖果系列、巧克力系列、烘焙系列、卤制品系列4大类,200多款产品。公司具有行业领先的生产能力,拥有各类生产线100条,年产能超过10万吨。同时,经过30年的发展,公司积累了完善的销售网络,核心经销商已经超过1200个,超…...
【常见BUG】Spring Boot 和 Springfox(Swagger)版本兼容问题
???欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老…...
【Python】FastAPI入门
文章目录 第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)1、补充Web开发1)Web前端开发2)Web后端开发 二、FastAPI安装1、安装Python虚拟环境2、安装FastAPI 三、第一个FastAPI案例1、访问接口和文档2、接…...
JavaScript系列(32)-- WebAssembly集成详解
JavaScript WebAssembly集成详解 🚀 今天,让我们深入了解JavaScript与WebAssembly的集成,这是一项能够显著提升Web应用性能的关键技术。 WebAssembly基础概念 🌟 💡 小知识:WebAssembly(简称W…...
wps数据分析000002
目录 一、快速定位技巧 二、快速选中技巧 全选 选中部分区域 选中部分区域(升级版) 三、快速移动技巧 四、快速录入技巧 五、总结 一、快速定位技巧 ctrl→(上下左右)快速定位光标对准单元格的上下部分双击名称单元格中…...
无降智o1 pro——一次特别的ChatGPT专业模式探索
这段时间和朋友们交流 ChatGPT 的使用心得,大家都提到一个很“神秘”的服务:它基于 O1 Pro 模型,能够在对话里一直保持相对高水平的理解和回复,不会突然变得“降智”。同时,整体使用还做了免折腾的网络设置——简单一点…...
前端:前端开发任务分解 / 开发清单
一、背景 前端开发过程中,好多任务同时开发,或者一个大的任务分解为若干个子任务进行开发,分解出去的很多内容容易记不清楚 / 不易过程管理,所以记录表格如下,方便开发同事,也辅助掌握整体开发情况。 二、…...
【Django自学】Django入门:如何使用django开发一个web项目(非常详细)
测试机器:windows11 x64 python版本:3.11 一、安装Django 安装步骤非常简单,使用pip安装就行 pip install django安装完成之后,python的 Scripts 文件夹下,会多一个 django-admin.exe (管理创建django项目的工具)。…...
面试经验分享-回忆版某小公司
说说你项目中数据仓库是怎么分层的,为什么要分层? 首先是ODS层,连接数据源和数据仓库,数据会进行简单的ETL操作,数据来源通常是业务数据库,用户日志文件或者来自消息队列的数据等 中间是核心的数据仓库层&a…...
WebSocket——推送方案选型
一、前言:为何需要服务端主动推送? 在现代应用中,很多功能都依赖于“消息推送”。比如: 小红点提醒:我们经常在手机应用里看到的一个小红点提示,表示有新的消息或任务需要我们关注。新消息提醒࿱…...
山石防火墙命令行配置示例
现网1台山石SG6000防火墙,配置都可以通过GUI实现。 但有一些配置在命令行下配置效率更高,比如在1个已有策略中添加1个host或端口。 下面的双引号可以不加 1 创建服务 1.1 单个端口 service "tcp-901"tcp dst-port 901 1.2 端口范围 servi…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
