当前位置: 首页 > news >正文

LLM - 大模型 ScallingLaws 的迁移学习与混合训练(PLM) 教程(3)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/145212097

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与 模型规模N、数据量D、计算资源C 之间关系的经验规律,揭示在大模型中,随着模型参数数量、数据集大小和计算资源的增加,模型性能的变化模式,指导更高效地分配资源,优化模型训练过程,实现更好的性能。这些规律不仅有助于预测不同规模模型的表现,还能为模型设计和训练提供理论依据,是推动大模型发展和应用的重要理论基础。

在 PLM 的迁移学习中,预训练 CLM 迁移至 MLM,通过 迁移缩放法则(Transfer Scaling Laws),合理的分配训练资源,以达到性能最优。同时验证,混合训练(Mixing Training) CLM 与 MLM,不如从零开始训练。

系列文章:

  1. 大模型 ScallingLaws 的 C=6ND 公式推导
  2. 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数
  3. 大模型 ScallingLaws 的迁移学习与混合训练

1. 从零开始与迁移学习

迁移缩放法则(Transfer Scaling Laws):预训练 MLM,迁移至 CLM,随着模型规模增大,收益递减;预训练 CLM,迁移至 MLM,随着模型规模增大,收益增加。不同 FLOPs 下 CLM 和 MLM 的损失(Loss)曲线,表明迁移策略的 有效前沿(Efficiency Frontiers),或 帕累托前沿(Pareto Frontier) 。如图:

Transfer

同时训练多个目标时,可能存促进或干扰,即 协同效应 问题,训练顺序也是关键因素,先训练 CLM 再训练 MLM,效果影响较大,反之,效果影响较小。

从零开始训练(Training from Scratch) L ( C s ) L(C_{s}) L(Cs)迁移学习(Transfer Learning) L ( C t ) L(C_{t}) L(Ct) 的 Loss 与 C 的法则:

L ( C s ) = a s × C s α s , L ( C t ) = a t × C t α t L(C_{s}) = a_{s} \times C_{s}^{\alpha_{s}},L(C_{t})=a_{t} \times C_{t}^{\alpha_{t}} L(Cs)=as×CsαsL(Ct)=at×Ctαt

计算量与 Loss 的相关参数:

Loss

例如,以 CLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(CLM)的 Loss 与 迁移学习(MLM to CLM)的 Loss,即:

L ( C s ) = 8.251 × ( 1 × 1 0 21 ) − 0.027 = 2.2362 L ( C t ) = 7.191 × ( 1 × 1 0 21 ) − 0.024 = 2.2531 L ( C s ) = 8.251 × ( 3 × 1 0 19 ) − 0.027 = 2.4582 L ( C t ) = 7.191 × ( 3 × 1 0 19 ) − 0.024 = 2.4507 L(C_s) = 8.251 \times (1 \times 10^{21})^{-0.027} = 2.2362 \\ L(C_t) = 7.191 \times (1 \times 10^{21})^{-0.024} = 2.2531 \\ L(C_s) = 8.251 \times (3 \times 10^{19})^{-0.027} = 2.4582 \\ L(C_t) = 7.191 \times (3 \times 10^{19})^{-0.024} = 2.4507 L(Cs)=8.251×(1×1021)0.027=2.2362L(Ct)=7.191×(1×1021)0.024=2.2531L(Cs)=8.251×(3×1019)0.027=2.4582L(Ct)=7.191×(3×1019)0.024=2.4507

例如,以 MLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(MLM)的 Loss 与 迁移学习(CLM to MLM)的 Loss,即:

L ( C s ) = 10.125 × ( 1 × 1 0 21 ) − 0.034 = 1.9561 L ( C t ) = 11.133 × ( 1 × 1 0 21 ) − 0.038 = 1.7726 L(C_s) = 10.125 \times (1 \times 10^{21})^{-0.034} = 1.9561 \\ L(C_t) = 11.133 \times (1 \times 10^{21})^{-0.038} = 1.7726 L(Cs)=10.125×(1×1021)0.034=1.9561L(Ct)=11.133×(1×1021)0.038=1.7726

因此,推导出 MLM 从零开始训练 C s C_{s} Cs 与 从 CLM 迁移学习 C t C_{t} Ct 的达到最优 Loss 所需计算量的比例:

C t ∝ C s α s α t = C s − 0.034 − 0.038 = C s 0.894 C_{t} \propto C_{s}^{\frac{\alpha_{s}}{\alpha_{t}}} = C_{s}^{\frac{-0.034}{-0.038}} = C_{s}^{0.894} \\ CtCsαtαs=Cs0.0380.034=Cs0.894

因此,最优的迁移学习策略:先使用 CLM 预训练,然后再训练 MLM。同时,CLM 与 MLM 的 混合训练(Mixing Training) 或改变训练顺序(即先 MLM 后 CLM),都没有带来显著的益处。推测原因是, MLM 仅专注于恢复 被损坏(Mask) 的标记,不具有因果性,如果 MLM 以从左到右的方式,根据上文预测序列中间的片段,才可能加快训练速度。

关于 CLM 与 MLM 的 混合训练(Mixing Training) 目标的验证 Loss,在全部模型规模中,从零开始训练都比混合训练的验证损失更低,表明,混合训练不如针对每个单独目标的专门训练有效。参考:

Mix

2. CLM 迁移至 MLM 的 Tokens 比例

左侧:为 CLM 预训练分配的 % 计算量的有效困惑度,即,% 计算资源表示在 CLM 预训练,剩余计算资源在 MLM 微调。最优的 CLM 预训练 % 计算资源范围为 [ 10 , 20 ] [10,20] [10,20],拟合的 D t D t + D f \frac{D_{t}}{D_{t}+D_{f}} Dt+DfDt 在最优损失范围内下降。

右侧:从零开始训练的模型(红色)从预训练 CLM 微调的模型(绿色) 的验证 困惑度(PPL) 比较,表明从 CLM 微调在更少 Tokens 数量下,降低困惑度。

Transfer

以模型规模 N = 85 M N=85M N=85M 为例,通过之前的公式,合理计算模型的计算量 C = 3 × 1 0 19 C=3 \times 10^{19} C=3×1019,即:

C C L M ( N ) = ( N 1.26 ∗ 1 0 − 3 ) 1 0.578 C C L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 1.26 × 1 0 − 3 ) 1 0.578 = 0.6 × 1 0 19 C M L M ( N ) = ( N 6.19 × 1 0 − 8 ) 1 0.776 C M L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 6.19 × 1 0 − 8 ) 1 0.776 = 3.4 × 1 0 19 \begin{align} C_{CLM}(N) &= (\frac{N}{1.26*10^{-3}})^\frac{1}{0.578} \\ C_{CLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{1.26 \times 10^{-3}})^{\frac{1}{0.578}} \\ &= 0.6 \times 10^{19} \\ C_{MLM}(N) &= (\frac{N}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ C_{MLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ &= 3.4 \times 10^{19} \end{align} CCLM(N)CCLM(85×10242)CMLM(N)CMLM(85×10242)=(1.26103N)0.5781=(1.26×10385×10242)0.5781=0.6×1019=(6.19×108N)0.7761=(6.19×10885×10242)0.7761=3.4×1019

合理数据量 D = 63.58 × 1 0 9 D=63.58 \times 10^{9} D=63.58×109 是:

D = C 6 N = 3.4 × 1 0 19 6 × 85 × 102 4 2 = 63.58 × 1 0 9 = 60 B \begin{align} D = \frac{C}{6N} = \frac{3.4 \times 10^{19}}{6 \times 85 \times 1024^{2}} = 63.58 \times 10^{9} = 60B \end{align} D=6NC=6×85×102423.4×1019=63.58×109=60B

其中, D t D_{t} Dt 表示 CLM 预训练的 Tokens 数量, D f D_{f} Df 表示 MLM 微调的 Tokens 数量,全部数据量即 D t + D f D_{t}+D_{f} Dt+Df

有效转移标记(Effectively Transferred Tokens, ETT) D t D_{t} Dt 是模型规模相同,在 MLM 上从零开始训练,以达到与在 CLM 上预训练的模型,相同损失所需的额外数据。如果预训练的 CLM 模型中的标记数量超过 D t D_{t} Dt ,那么 CLM 预训练的计算就是多余的。如果能提前知道 D t D_{t} Dt ,可以指导 CLM 预训练的标记分配。

迁移缩放法则(Transfer Scaling Laws),以模型规模 N = 85 M N=85M N=85M ,微调数据 D f = 48 B D_{f}=48B Df=48B 为例,计算预训练 D t = 8.57 B D_{t}=8.57B Dt=8.57B占比约 14.28%,属于 [10, 20] 之间,符合法则:

D t = k × 1 D f α × 1 N β = 3.65 × 1 0 5 × 1 D f − 0.137 × 1 N − 0.369 D t = 3.65 × 1 0 5 × 1 ( 48 × 102 4 3 ) − 0.137 × 1 ( 85 × 102 4 2 ) − 0.369 = 9.2 × 1 0 9 ≈ 8.57 B < 12 B \begin{align} D_{t} &= k \times \frac{1}{D_{f}^{\alpha}} \times \frac{1}{N^{\beta}} \\ &= 3.65 \times 10^5 \times \frac{1}{D_{f}^{-0.137}} \times \frac{1}{N^{-0.369}} \\ D_{t} &= 3.65 \times 10^5 \times \frac{1}{(48 \times 1024^3)^{-0.137}} \times \frac{1}{(85 \times 1024^2)^{-0.369}} \\ &= 9.2 \times 10^9 \approx 8.57B < 12B \end{align} DtDt=k×Dfα1×Nβ1=3.65×105×Df0.1371×N0.3691=3.65×105×(48×10243)0.1371×(85×10242)0.3691=9.2×1098.57B<12B

相关文章:

LLM - 大模型 ScallingLaws 的迁移学习与混合训练(PLM) 教程(3)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/145212097 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 Scalin…...

【软件开发过程管理规范】需求管理,需求分析,设计开发管理,测试管理(Word)

一、需求管理规程 1 简介 2 过程总体描述 2.1 过程概述 2.2 过程流程图 3 过程元素描述 3.1 准备阶段 3.2 需求调研 3.3 需求分析 软件开发人员及用户往往容易忽略信息沟通&#xff0c;这导致软件开发出来后不能很好地满足用户的需要&#xff0c;从而造成返工。而返工不仅在技术…...

计算机网络 (49)网络安全问题概述

前言 计算机网络安全问题是一个复杂且多维的领域&#xff0c;它涉及到网络系统的硬件、软件以及数据的安全保护&#xff0c;确保这些元素不因偶然的或恶意的原因而遭到破坏、更改或泄露。 一、计算机网络安全的定义 计算机网络安全是指利用网络管理控制和技术措施&#xff0c;保…...

RPA编程实践:Electron实践开始

文章目录 前言闲话少叙&#xff0c;打开官网版本发布安装在 Windows 上安装在 macOS 上安装在 Linux (Ubuntu) 上安装 前言 上回说道&#xff0c;我们electron适合于熟悉web开发&#xff0c;但想要研发桌面应用的人。 但我觉得这个需求应该不是很多。 因为使用electron&#…...

ORB-SLAM2源码学习:MapPoint.cc④: 新增地图点总结

前言 让我们来总结ORB-SLAM2 中的新增地图点。 1.在第一阶段跟踪中的恒速模型跟踪中新增地图点 针对双目相机或RGB-D相机&#xff0c;找出上一帧中具有有效深度值且不是地图点的特征点&#xff0c;将其中较近的点作为上一帧新的临时地图点&#xff0c; 并记录在向扯mlpTempo…...

2025西湖论剑-babytrace

前言 就做了下题目&#xff0c;pwn1/3 都是签到&#xff0c;pwn2 后面绕 ptrace 有点意思&#xff0c;简单记录一下 漏洞分析 子进程中的读/写功能没有检查负数的情况&#xff0c;存在越界读写&#xff1a; void __fastcall get_value(__int64 *int64_arr) {__int64 ll; //…...

绘图专用,26个常见流程图符号及其解释

关注作者 当您设计网站、构建应用程序或绘制业务系统时&#xff0c;您需要一种方法来清晰地绘制步骤和用户流程。虽然您可以使用流程图来概述这些过程&#xff0c;但箭头和方框只能帮助您到目前为止。为了清楚地表达您的意思&#xff0c;您需要流程图符号。 为了帮助解释每个流…...

【个人学习记录】软件开发生命周期(SDLC)是什么?

软件开发生命周期&#xff08;Software Development Life Cycle&#xff0c;SDLC&#xff09;是一个用于规划、创建、测试和部署信息系统的结构化过程。它包含以下主要阶段&#xff1a; 需求分析&#xff08;Requirements Analysis&#xff09; 收集并分析用户需求定义系统目标…...

自学SpringBoot笔记

概念 什么是SpringBoot&#xff1f; Spring Boot 是基于 Spring Framework 的一款开源框架&#xff0c;主要用于简化 Spring 应用程序的开发。它通过提供一系列的 开箱即用的功能 和 自动配置&#xff0c;让开发者可以快速构建生产级别的独立应用程序&#xff0c;而无需手动配…...

03JavaWeb——Ajax-Vue-Element(项目实战)

1 Ajax 1.1 Ajax介绍 1.1.1 Ajax概述 我们前端页面中的数据&#xff0c;如下图所示的表格中的学生信息&#xff0c;应该来自于后台&#xff0c;那么我们的后台和前端是互不影响的2个程序&#xff0c;那么我们前端应该如何从后台获取数据呢&#xff1f;因为是2个程序&#xf…...

[leetcode](找到vector中的特定元素并删除)无重复字符的最长子串

一.找到vector中的特定元素并删除 #include <iostream> #include <vector> #include <algorithm> int main() { // 示例 vector std::vector<int> vec {1, 2, 3, 4, 5, 6}; // 要删除的元素 int aim 3; // 查找元素 auto it std::fin…...

Mockito+PowerMock+Junit单元测试

一、单元测试用途 1、日常开发团队要求规范&#xff0c;需要对开发需求代码进行单元测试并要求行覆盖率达到要求&#xff0c;DevOps流水线也会开设相关门禁阀值阻断代码提交&#xff0c;一般新增代码行覆盖率80%左右。 二、Mock测试介绍 1、Mock是为了解决不同的单元之间由于…...

Ncat: bind to :::7777: Address already in use报错问题解决

问题描述 Ncat: bind to :::7777: Address already in use. QUITTING. 具体解决方法 If you are in linux environment try, Use netstat -tulpn to display the processeskill -9 <pid> This will terminate the process If you are using windows, Use netstat -…...

Docker 搭建mysql 连接超时问题,xxl-job启动mysql连接报错,禁用dns

1.本地连接Navicat报错信息&#xff0c;猜测是navicat默认连接超时导致的&#xff0c;后面换成idea一个插件虽然慢但连接上了 2013 - Lost connection to MySQL server at reading initial communication packet 2.启动xxl-job会报错&#xff0c;网上有人mysql驱动与数据库不匹…...

在线图片像素颜色拾取工具

在线图片像素颜色拾取工具&#xff0c;非常方便的一个工具&#xff0c;无需登录&#xff0c;用完就走。 包括中文和英文版本。 https://getcolor.openai2025.com...

Qt之登录界面(splash)

在上一篇多文档窗口设计(MDI)的基础上增加了一个登录界面&#xff08;splash&#xff09;. 该模块可以扩展为常规的软件登录界面。 界面展示如下 如果用户名和密码输入正确&#xff0c;则调到MDI界面&#xff0c;如果用户名和密码一共输入三次以上&#xff0c;则程序强制退出…...

NotebookLM:Google 最新 AI 笔记助理解析与实战应用

NotebookLM&#xff1a;Google 最新 AI 笔记助理解析与实战应用 在 AI 驱动的生产力工具不断进化的今天&#xff0c;Google 推出的 NotebookLM&#xff08;Notebook Language Model&#xff09;成为了一款备受关注的智能笔记助理。它结合了 Google 的大语言模型&#xff08;LL…...

软路由系统iStoreOS 一键安装 docker compose

一键安装命令 大家好&#xff01;今天我来分享一个快速安装 docker-compose 的方法。以下是我常用的命令&#xff0c;当前版本是 V2.32.4。如果你需要最新版本&#xff0c;可以查看获取docker compose最新版本号 部分&#xff0c;获取最新版本号后替换命令中的版本号即可。 w…...

vue3本地文件下载

开发记录&#xff1a; vue3本地下载文件要把文件放到public下&#xff0c;如果放在src里面可能会出现这个问题...

纯代码实现给WordPress添加文章复制功能

在给wordpress添加内容时&#xff0c;有时会遇到文章复制的功能&#xff0c;但是wordpress又没有这个功能。把下面一段代码添加到functions.php文件中&#xff0c;就可以实现这个功能。 /** Function for post duplication. Dups appear as drafts. User is redirected to the…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...

算法250609 高精度

加法 #include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; char input1[205]; char input2[205]; int main(){while(scanf("%s%s",input1,input2)!EOF){int a[205]…...

盲盒一番赏小程序:引领盲盒新潮流

在盲盒市场日益火爆的今天&#xff0c;如何才能在众多盲盒产品中脱颖而出&#xff1f;盲盒一番赏小程序给出了答案&#xff0c;它以创新的玩法和优质的服务&#xff0c;引领着盲盒新潮流。 一番赏小程序的最大特色在于其独特的赏品分级制度。赏品分为多个等级&#xff0c;从普…...