当前位置: 首页 > news >正文

python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)角点检测

角点检测(Corner Detection)是计算机视觉和图像处理中重要的步骤,主要用于提取图像中的关键特征,以便进行后续的任务,比如图像匹配、物体识别、运动跟踪等。下面介绍几种常用的角点检测方法及其应用。

1. Harris角点检测

Harris角点检测是一种经典的角点检测算法,基于图像的局部特征,通过计算图像的自相关矩阵来判断一个点是否为角点。

  • 原理

    • 计算局部窗口内的图像梯度,并构造自相关矩阵。
    • 通过计算赫希因子(Harris Matrix),确定强度响应,响应值大于一定阈值的点被认为是角点。
  • 优点

    • 对于噪声具有一定的鲁棒性。
    • 可以检测到多种类型的角点。

OpenCV 中的 cv.cornerHarris() 函数用来实现 Harris 角点检测。它的参数是:

img - 输入图像,应为 float32 类型的灰度图。
blockSize - 角点检测所考虑的邻域大小。
ksize - Sobel 导数的内核大小。
k - Harris 检测器方程中的自由参数。

 OpenCV 带有一个函数 cv.cornerSubPix() ,它进一步细化了角点检测,以达到亚像素级精度。

import numpy as np
import cv2 as cv
filename = 'output.png'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# find Harris corners
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# find centroids
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# define the criteria to stop and refine the corners
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# Now draw them
res = np.hstack((centroids,corners))
res = np.intp(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imshow('sobely',img)
cv.waitKey(0)

2. Shi-Tomasi角点检测

Shi-Tomasi角点检测法是对Harris方法的改进,更注重测量响应函数的特征。

  • 原理

    • 通过计算两个特征值,选择具有较大特征值的点作为角点。
    • 角点的选择更为简洁和高效。
  • 优点

    • 对图像旋转和尺度变化具有更好的鲁棒性。
    • 适合实时应用,如视频监控。

OpenCV 有一个函数, cv.goodFeaturesToTrack() 。它通过 Shi-Tomasi 方法(或 Harris 角点检测,如果你指定它)在图像中找到 N 个最佳的角点。输入图像应该是灰度图像。然后指定要查找的角点数量。然后指定质量等级,该等级是 0-1 之间的值,所有低于这个质量等级的角点都将被忽略。最后设置检测到的两个角点之间的最小欧氏距离。
例如尝试找到 25 个最佳角点:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
corners = cv.goodFeaturesToTrack(gray,25,0.01,10)
corners = np.intp(corners)
for i in corners:x,y = i.ravel()cv.circle(img,(x,y),3,255,-1)
plt.imshow(img),plt.show()

3. SIFT(尺度不变特征变换)

SIFT是一种用于检测和描述局部特征的算法,具有对尺度、旋转和光照变化的高鲁棒性。

  • 原理

    • 检测图像中多个尺度的关键点。
    • 生成每个关键点的描述符,以便进行特征匹配。
  • 优点

    • 高鲁棒性,适用于图像匹配、拼接等应用。
    • 可以处理遮挡和光照变化。

SIFT算法主要可以分成以下几个步骤:

  1. 构建高斯金字塔(Gaussian Pyramid)

    • 对于给定的图像,首先通过对图像进行不同尺度的高斯模糊,构建一个高斯金字塔。这涉及到对原图像逐层进行模糊,每一层的尺度增大。通常,金字塔中的每一层是上一层的平滑图像。
  2. 构建差分高斯金字塔(Difference of Gaussian)

    • 通过相邻的高斯图像层之间进行减法来计算差分高斯(DoG),该过程可以近似计算图像的拉普拉斯金字塔(Laplacian Pyramid)。
    • 公式为:

      3.  关键点检测

  • 对于每个像素点,寻找极值点,即在当前尺度和相邻的尺度(上层和下层)中具有极大或极小值的点。具体步骤如下:
    • 遍历图像的每个像素,检查其是否在其邻域内(包括尺度上和空间上)是最大或最小点。
    • 一般使用3x3x3的邻域,即考虑9个临近像素的3个尺度。

     4.  精确定位关键点

  • 对检测到的关键点进行细化,以提高其定位精度。常用的方法是通过泰勒级数展开。即优化关键点的位置,利用Hessian矩阵或者主导方向计算来细化关键点的位置和尺度。

   5. 选择主方向

  • 为每个关键点分配一个或多个主方向,以使得描述符具有旋转不变性。
    • 计算关键点周围一定半径内的梯度值,并确定主方向。
    • 形成一个方向直方图,用于统计方向,并选择最大直方图峰值作为关键点的主方向。

  6. 生成关键点描述符

  • 在每个关键点的周围区域中,计算其特征描述符。通常,这个区域被划分为多个子区块,并在每个子区块内计算梯度方向和幅值。
  • 将每个子块的梯度信息汇总,形成一个包含多维信息的特征向量。

  7. 特征点匹配(可选)

  • 利用上述计算得到的描述符,针对不同图像中的特征点进行匹配。通常采取欧几里德距离或二元汉明距离来计算描述符之间的相似度。

具体步骤

  1. 构建高斯金字塔:对图像进行多次高斯模糊,生成一系列不同尺度的图像。

  2. 计算差分高斯:通过相邻两层的高斯图像做差,提取出潜在的特征点。

  3. 找到极值点:例如,对于某个像素,比较它与相邻8个像素以及上面和下面的对应像素,如果它是最大的或最小的,则记为一个关键点。

  4. 关键点精确定位:利用插值方法进行位置微调,去除那些边缘响应较强或低对比度的关键点。

  5. 计算方向:统计关键点周围像素的梯度直方图,确定主要方向。

  6. 生成描述符:以关键点的主方向为基准,计算关键点周围小块的描述符。

  7. 匹配过程:对于每个图像的特征点,可以使用最近邻法或比例测试进行匹配。

import numpy as np
import cv2 as cv
img = cv.imread('f:/apple.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
sift = cv.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)
img=cv.drawKeypoints(gray,kp,img)
img=cv.drawKeypoints(gray,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv.imshow('SIFT',img)
cv.waitKey(0)

4. SURF算法

SURF的基本理念是在SIFT的基础上,通过加快特征点检测和描述过程,取得更高的效率。SURF的主要步骤如下:

1.1 特征点检测
  • Hessian矩阵:SURF使用Hessian矩阵的行列式来检测特征点。通过计算每个像素点的Hessian矩阵,可以快速找到潜在的特征点。Hessian矩阵具有以下形式:

  • 盒子滤波:为了计算Hessian矩阵的行列式,SURF使用的是快速的Haar小波卷积。这种方法通过将图像分为不同大小的盒子,并使用加权和减少计算复杂度。
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。

1.2 特征描述符生成
  • 梯度计算:SURF在特征点周围的邻域内计算图像的梯度值,并将其组织成一个描述符。描述符的生成过程涉及多个子块,各子块的特征会被汇总成一个固定长度的描述符。

  • 方向归一化:为了确保特征描述符具有方向不变性,SURF根据特征点的主方向进行方向归一化。


import cv2 as cv
from matplotlib import pyplot as plt# 读取图像
img = cv.imread('f:/apple.jpg', 0)# Create SURF object. You can specify params here or later.
# Here I set Hessian Threshold to 400
surf = cv.xfeatures2d.SURF_create(400)
# Find keypoints and descriptors directly
kp, des = surf.detectAndCompute(img,None)# Check present Hessian threshold
print( surf.getHessianThreshold() )# We set it to some 50000. Remember, it is just for representing in picture.
# In actual cases, it is better to have a value 300-500
surf.setHessianThreshold(50000)
# Again compute keypoints and check its number.
kp, des = surf.detectAndCompute(img,None)
print( len(kp) )img2 = cv.drawKeypoints(img,kp,None,(255,0,0),4)
plt.imshow(img2),plt.show()

5. ORB(Oriented FAST and Rotated BRIEF)

ORB结合了FAST特征检测和BRIEF特征描述,可以更快速地进行角点检测和描述。ORB 基本上是 FAST 特征点检测器和 Brief 描述子的融合,并进行了许多修改以增强性能。首先,它使用 FAST 查找特征点,然后应用 Harris 角点的测量方法来查找其中的前 N 个点。它还使用金字塔来生成多尺度特征。但有一个问题是,FAST 不计算方向。

  • 原理

    • 使用FAST算法检测特征点,计算点的方向和角度。
    • 采用BRIEF描述符来描述特征。
  • 优点

    • 快速高效,适合实时应用。
    • 对于图像的旋转具有稳健性。

cv.ORB()使用 feature2d 通用接口创建 ORB 对象。它有许多可选参数。
nFeatures,表示要保留的最大要素数量(默认为 500),
scoreType,  表示对特征点进行排序使用 Harris 得分或 FAST 得分(默认为 Harris 得分)等。
WTA_K, 决定生成一个 oriented BRIEF 描述子的所用的像素点数目。默认情况下它是 2,即一次选择两个点。在这种情况下进行匹配,使用 NORM_HAMMING 距离。如果 WTA_K 为 3 或 4,则需要 3 或 4 个点来产生 BRIEF 描述子,匹配距离由 NORM_HAMMING2 定义。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('f:/apple.jpg',0)
# Initiate ORB detector
orb = cv.ORB_create()
# find the keypoints with ORB
kp = orb.detect(img,None)
# compute the descriptors with ORB
kp, des = orb.compute(img, kp)
# draw only keypoints location,not size and orientation
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
plt.imshow(img2), plt.show()

相关文章:

python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)角点检测

角点检测(Corner Detection)是计算机视觉和图像处理中重要的步骤,主要用于提取图像中的关键特征,以便进行后续的任务,比如图像匹配、物体识别、运动跟踪等。下面介绍几种常用的角点检测方法及其应用。 1. Harris角点检…...

费解的开关

费解的开关 你玩过“拉灯”游戏吗? 25 盏灯排成一个 55 的方形。 每一个灯都有一个开关,游戏者可以改变它的状态。 每一步,游戏者可以改变某一个灯的状态。 游戏者改变一个灯的状态会产生连锁反应:和这个灯上下左右相邻的灯也…...

【机器学习】机器学习引领数学难题攻克:迈向未知数学领域的新突破

我的个人主页 我的领域:人工智能篇,希望能帮助到大家!!!👍点赞 收藏❤ 一、引言 在数学的浩瀚领域中,存在着诸多长期未解的难题,这些难题犹如高耸的山峰,吸引着无数数…...

Qt之QDjango-db的简单使用

QDjango是一款由C编写、依托于Qt库的Web开发框架,其设计理念受到了广受欢迎的Python框架Django的影响。这个项目旨在提供一个高效、灵活且易于使用的工具集,帮助开发者构建高质量的Web应用。其项目地址: https://gitcode.com/gh_mirrors/qd/qdjango&…...

缓存、数据库双写一致性解决方案

双写一致性问题的核心是确保数据库和缓存之间的数据同步,以避免缓存与数据库数据不同步的问题,尤其是在高并发和异步环境下。本文将探讨双写一致性面临的主要问题和解决方案,重点关注最终一致性。 本文讨论的是最终一致性问题 双写一致性面…...

SUnet: A multi-organ segmentation network based on multiple attention【医学图像分割】

一、论文信息 1.1、中文名称 名称:SUnet:基于多重注意力的多器官分割网络 1.2、论文关键词 医学图像分割、Transformer、注意力机制、高效特征融合模块 1.3、核心概述 本文提出了一种新颖有效的医学图像分割方法 SUnet,用于腹部和胸部的多…...

uniapp实现“到这儿去”、拨打电话功能

"到这儿去" 在 UniApp 中实现“到这儿去”的功能,即调起地图导航至指定位置,对于不同的平台(小程序、H5、App)有不同的处理方式。下面将简单介绍如何在这些平台上实现该功能,并讨论位置信息的获取。后面需求会用到,先来找一些相关资料,并不一定很准确,但也来…...

2025年入职/转行网络安全,该如何规划?网络安全职业规划

网络安全是一个日益增长的行业,对于打算进入或转行进入该领域的人来说,制定一个清晰且系统的职业规划非常重要。2025年,网络安全领域将继续发展并面临新的挑战,包括不断变化的技术、法规要求以及日益复杂的威胁环境。以下是一个关…...

【博客之星】2024年度个人成长、强化学习算法领域总结

📢在2025年初,非常荣幸能通过审核进入到《2024年度CSDN博客之星总评选》TOP300的年度评选中,排名40。这还是第一次来到这个阶段,作为一名博士研究生,还是备受鼓舞的。在这里我将以回顾的方式讲述一下这一年在CSDN中走过…...

HTML5 Canvas实现的跨年烟花源代码

以下是一份基于HTML5 Canvas实现的跨年烟花源代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml">…...

使用通用预训练范式为 3D 基础模型铺平道路

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01;&#xff0c;本次是英文需要英文功底扎实的阅读。 Abstract In contrast to numerous NLP and 2D vision foundational models, learning a 3D foundational model poses considerably greater challenge…...

SpringMVC (2)

目录 1. RequestMapping 注解介绍 2. RequestMapping 使用 3. RequestMapping与请求方式 3.1 RequestMapping 支持Get和Post类型的请求 3.2 RequestMapping 指定接收某种请求 3.3 GetMapping和PostMapping 4. 传参 4.1 通过查询字符串传参 4.2 在 Body 中传参 4.2.1 …...

【Vim Masterclass 笔记16】S07L32 + L33:同步练习09 —— 掌握 Vim 宏操作的六个典型案例(含点评课内容)

文章目录 S07L32 Exercise 09 - Macros1 训练目标2 操作指令2.1. 打开 macros-practice.txt 文件2.2. 练习1&#xff1a;将旧版 Python 代码转换为新版写法2.3. 练习2&#xff1a;根据列表内容批量创建 Shell 脚本2.4. 练习3&#xff1a;对电话号码作格式化处理2.5. 练习4&…...

爬楼梯问题(Leetcode 第70题)

爬楼梯问题&#xff08;Leetcode 第70题&#xff09; 问题描述 假设你正在爬楼梯。每次你可以爬 1 个或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。…...

6.5 正定矩阵

一、正定矩阵 这一节关注的是特征值都是正数的对称矩阵。如果对称使得矩阵很重要&#xff0c;那么这个额外的性质&#xff08;所有的 λ > 0 \lambda>0 λ>0&#xff09;会使得它更加的特殊。我们所说的特殊并不表示它稀有&#xff0c;特征值都是正数的对称矩阵几乎…...

verilog笔记1

1. 阻塞赋值 阻塞赋值&#xff0c;顾名思义即在一个 always 块中&#xff0c;后面的语句会受到前语句的影响&#xff0c;具体来说就是在同一个always 中&#xff0c;一条阻塞赋值语句如果没有执行结束&#xff0c;那么该语句后面的语句就不能被执行&#xff0c;即被“阻塞”。也…...

游戏引擎学习第81天

仓库:https://gitee.com/mrxiao_com/2d_game_2 或许我们应该尝试在地面上添加一些绘图 在这段时间的工作中&#xff0c;讨论了如何改进地面渲染的问题。虽然之前并没有专注于渲染部分&#xff0c;因为当时主要的工作重心不在这里&#xff0c;但在实现过程中&#xff0c;发现地…...

git系列之revert回滚

1. Git 使用cherry-pick“摘樱桃” step 1&#xff1a; 本地切到远程分支&#xff0c;对齐要对齐的base分支&#xff0c;举例子 localmap git pull git reset --hard localmap 对应的commit idstep 2&#xff1a; 执行cherry-pick命令 git cherry-pick abc123这样就会将远程…...

监控与调试:性能优化的利器 — ShardingSphere

在分布式数据库系统中&#xff0c;监控和调试是确保系统高效运行的关键。ShardingSphere 提供了多种监控和调试工具&#xff0c;帮助开发者实时跟踪和优化性能&#xff0c;识别瓶颈&#xff0c;进行故障排查&#xff0c;从而提升系统的稳定性和响应速度。本文将介绍如何使用 Sh…...

LLVM - 编译器前端 - 理解BNF(巴科斯-诺尔范式)

一:概述 BNF(Backus-Naur Form,巴科斯-诺尔范式)是一种用于描述上下文无关文法的形式语言,广泛应用于定义编程语言、协议和文件格式的语法规则。 下面是一小段类Pascal编程语言,这个编程语言就可以用BNF描述。用BNF描述编程语言的语法规则之后,就可以根据这个规则生成抽…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

第14节 Node.js 全局对象

JavaScript 中有一个特殊的对象&#xff0c;称为全局对象&#xff08;Global Object&#xff09;&#xff0c;它及其所有属性都可以在程序的任何地方访问&#xff0c;即全局变量。 在浏览器 JavaScript 中&#xff0c;通常 window 是全局对象&#xff0c; 而 Node.js 中的全局…...

【Linux】使用1Panel 面板让服务器定时自动执行任务

服务器就是一台24小时开机的主机&#xff0c;相比自己家中不定时开关机的主机更适合完成定时任务&#xff0c;例如下载资源、备份上传&#xff0c;或者登录某个网站执行一些操作&#xff0c;只需要编写 脚本&#xff0c;然后让服务器定时来执行这个脚本就可以。 有很多方法实现…...