当前位置: 首页 > news >正文

21.1、网络设备安全概述

目录

    • 网络设备安全概况——交换机、路由器安全威胁

网络设备安全概况——交换机、路由器安全威胁

第一个是MAC地址泛洪,MAC地址表记录着交换机拥有的MAC地址跟端口的对应关系

MAC地址表主要是三个字段,MAC地址对应的端口号,也就表示主机是连到哪个端口之下,以及这个端口属于的VLAN。

二层交换机基于MAC地址进行数据转发,三层交换机或者路由器基于IP地址进行转发,IP地址转发依赖于路由表。

二层转发依赖MAC地址表,MAC地址表容量是有限的,比如说它容量就16k,最多能够存16000条表,但是如果这时候有一台主机伪造大量的虚假MAC地址发往交换机,这台交换机下面连了一台攻击者,他一分钟发个100万条虚假的MAC地址表,MAC地址信息,然后交换机就要持续学习,就会把MAC地址表给充满,被充满了之后,其他正常的MAC地址就不能学习了,其他正常的数据也就不能被转发,所以mac地址洪泛攻击,其实是一种dos攻击,它耗尽我们交换机mac地址表象的资源

ARP表里边存的是MAC地址和IP对应关系,但后面还可能有个字段,就是我是动态学到的还是静态手工绑定的,动态就是通过ARP协议学到的,静态是手工做的ARP绑定。

数据封装会用到MAC地址,比如说这是一个应用层数据,在我们做网络传输之前,首先要先封装一个传输层。比如说我现在封装一个80端口,这是网页的流量,然后接着要封装IP层就IP地址相关的,接着就到了数据链路层,封装以太网,以太网封装里边是有目的Mac地址

通过查ARP表,找到目标MAC地址,就是发往某个IP,这个IP对应的MAC地址在ARP表里面是可以查到的,所以这就是ARP表,它的作用主要是用于二层封装的。在电脑上是可以看到的,在交换机上也有,只要支持IP的设备,都会有ARP表。

静态表示手工绑定,动态是通过ARP协议来学到的,这就是ARP表

通过arp -a命令来查看路由表,路由表主要是显示路由信息,比如说我要访问一个终点,我具体路应该怎么走,这上面会有一条一条的记录,在电脑上,也可以看,电脑上查看路由表的命令有两个,第一个是route print命令可以查看路由表,目标网络,掩码,去往目标网络,跃点数,表示去往目标网络的开销值

netstat -r,这条命令也是查看路由表效果,跟前面的route print是一样的。这是关于网络设备常见的三张表MAC地址表、ARP表和路由表,ARP表和路由表在路由器或交换机上也可以查看它们的命令,只是有点不一样,比如说在华为设备上去查看路由表,常见的就是display ip routine table

ARP欺骗就是针对ARP表,要做数据封装,就要查ARP表,比如说目的地址是192.168.0.1,最后封装的目的Mac地址是这么多,但是如果在网络当中发很多虚假的ARP报文,让你学到假的表,最后你封装的目的Mac,它就是一个虚假的mac表,对方接收是会出问题的,这就是ARP欺骗。攻击者可以发送虚假的ARP包来更新被攻击主机上的ARP缓存,ARP缓存就是ARP表,进行地址欺骗

ARP欺骗主要是二层攻击,他也不能说是二层问题,因为ARP报文到底说它是二层还是三层不好说,因为它跟IP有关,又跟mac有关,你就没有必要去纠结了,反正是进行ARP MAC地址欺骗

第三个口令威胁,比如说弱密码,我们可以通过暴力破解或者通过猜测的方式去威胁你的密码

第四个漏洞利用,我们的交换机路由器,最底层实际上是有一个Linux内核,然后再上一层厂商系统,比如思科的就是iOS、华为的就是vrp,然后再上层会有一些应用,比如说它会有web应用,这些应用都是软件,从下到上都是软件,就有可能有漏洞,像拒绝服务、非授权访问、信息泄密等等漏洞,这些漏洞都可能被黑客利用,这是交换机面临的四个安全威胁,路由器面临的威胁其实差不多,前两个漏洞,利用口令安全威胁这些都一样

这里面还提了路由协议安全威胁,路由器是支持大量的路由协议,比如说OSPF、bgp等等,这些协议可能有漏洞,协议本质上也就是一个软件,协议就是软件,一般系统自带的软件,这个软件又能选路,用来告诉我们去往目的地具体怎么走,网络协议就是基础的软件,它实现的功能就跟QQ微信是聊天一样的。OSPF跟bgp这种跟我们普通软件没有什么区别,就是实现某个功能,软件有可能有漏洞

第四个还可能面临DOS、DDOS威胁。DOS攻击就是发送恶意的数据包到路由器,致使路由器处理数据不当,导致路由器停止运行或者干扰它的正常运行,DOS攻击第二个利用僵尸网络制造大量的网络流量传送到目标网络,导致路由器处理瘫痪。大量的流量僵尸网络,最典型的是ddos攻击,其实说实话,实际的网络当中,想把路由器给干瘫痪,这种难度是很大的。很多时候,我们用僵尸网络去攻击服务器,把服务器整瘫痪要容易一些,你想把路由器搞瘫痪不是说不行,这个难度大的惊人,所以实际上你如果要去搞攻击的话,很少去这么干

第五个叫依赖性攻击,攻击者破坏路由器所依赖的服务或者环境,导致路由器非正常运行,比如破坏路由器依赖的认证服务器,导致管理员无法登陆路由器,就是它依赖的一套系统,比如说还可以破坏网管系统,导致管理员没有办法去登录管理路由器设备。

路由器面临的安全威胁,交换机一样面临,没有必要把他们分开,依赖性威胁交换机是存在的,路由协议攻击,三层交换机也支持路由协议

相关文章:

21.1、网络设备安全概述

目录 网络设备安全概况——交换机、路由器安全威胁 网络设备安全概况——交换机、路由器安全威胁 第一个是MAC地址泛洪,MAC地址表记录着交换机拥有的MAC地址跟端口的对应关系 MAC地址表主要是三个字段,MAC地址对应的端口号,也就表示主机是连…...

通过idea创建的springmvc工程需要的配置

在创建的spring mvc工程中&#xff0c;使用idea开发之前需要配置文件包括porm.xml、web.xml、springmvc.xml 1、porm.xml 工程以来的spring库&#xff0c;主要包括spring-aop、spring-web、spring-webmvc&#xff0c;示例配置如下&#xff1a; <project xmlns"http:/…...

Redis 持久化机制:RDB 和 AOF

Redis 持久化机制&#xff1a;RDB 和 AOF Redis 主要提供了两种持久化方式&#xff1a;**RDB&#xff08;Redis Database&#xff09;**和 AOF&#xff08;Append-Only File&#xff09;。它们各自的实现原理、优缺点以及适用场景如下。 1. RDB&#xff08;Redis Database&…...

【博客之星评选】2024年度前端学习总结

故事的开端...始于2024年第一篇前端技术博客 那故事的终末...也该结束于陪伴了我一整年的前端知识了 踏入 2025 年&#xff0c;满心激动与自豪&#xff0c;我成功闯进了《2024 年度 CSDN 博客之星总评选》的 TOP300。作为一名刚接触技术写作不久的萌新&#xff0c;这次能走到这…...

将IDLE里面python环境pyqt5配置的vscode

首先安装pyqt5全套&#xff1a;pip install pyqt5-tools 打开Vscode&#xff1a; 安装第三方扩展&#xff1a;PYQT Integration 成功配置designer.exe的路径【个人安装pyqt5的执行路径】&#xff0c;便可直接打开UI文件&#xff0c;进行编辑。 配置pyuic,如果下图填写方法使用…...

【专题三:穷举vs暴搜vs深搜vs回溯vs剪枝】46. 全排列

1.题目解析 2.讲解算法原理 1.首先画出决策树&#xff0c;越详细越好 2.设计代码 全局变量 List<List<Integer>> retList<Integer> pathboolean[] check dfs函数 仅关心某一节点在干什么 细节问题回溯 干掉path最后一个元素修改check权限 剪枝 check中为…...

使用傅里叶变换进行图像边缘检测

使用傅里叶变换进行图像边缘检测 今天我们介绍通过傅里叶变换求得图像的边缘 什么是傅立叶变换&#xff1f; 简单来说&#xff0c;傅里叶变换是将输入的信号分解成指定样式的构造块。例如&#xff0c;首先通过叠加具有不同频率的两个或更多个正弦函数而生成信号f&#xff08;x…...

DDD FAQs梳理

术语 领域&#xff1a;一种专门活动的范围、部类。 子域&#xff1a;一个领域细分出的多个子领域。 核心域&#xff1a;具备核心竞争力的子域。 通用域&#xff1a;同时被多个子域使用的通用功能子域&#xff0c;比如认证、权限。 支撑域&#xff1a;一些辅助性或后台功能组成…...

新星杯-ESP32智能硬件开发--SoC基础

本博文内容导读 1、当前嵌入式系统的发展情况&#xff0c;分析SoC作为物联网开发的重要技术&#xff0c;是未来物联网发展重要方向。 2、介绍SoC系统的组成和系统特点&#xff0c;了解SoC打下SoC基础。 3、介绍基于ESP32的SoC系列开发板&#xff0c;ESP32开发的系统功能进行总…...

WDM_OTN_基础知识_波分系统的网络位置

波分系统简介和OTU 在这节课的内容中&#xff0c;我们主要介绍&#xff0c;波分系统在整个通信网络中的位置&#xff0c;波分系统的构成和它的架构&#xff0c;波分设备的构成和信号图&#xff0c;以及OUT的功能和分类及波分系统的应用场景。 波分系统在整个通信网络中&#x…...

计算机网络 (46)简单网络管理协议SNMP

前言 简单网络管理协议&#xff08;SNMP&#xff0c;Simple Network Management Protocol&#xff09;是一种用于在计算机网络中管理网络节点的标准协议。 一、概述 SNMP是基于TCP/IP五层协议中的应用层协议&#xff0c;它使网络管理员能够管理网络效能&#xff0c;发现并解决网…...

Excel重新踩坑6:工作实战总结之根据筛选条件求平均成绩

一、前言&#xff1a; 这个博客的实战场景&#xff1a;给了一组学生数据&#xff0c;这些数据中&#xff0c;有全市20个社区&#xff0c;1-9年级的学生各科成绩。要求按照各社区统计1-9年级的所有学生各科平均值。下面首先介绍会用到的一些函数&#xff0c;然后再简单说明实战…...

使用 Java 和 FreeMarker 实现自动生成供货清单,动态生成 Word 文档,简化文档处理流程。

在上一篇博客中主要是使用SpringBootApache POI实现了BOM物料清单Excel表格导出&#xff0c;详见以下博客&#xff1a; Spring Boot Apache POI 实现 Exc&#xff08;&#xff09;el 导出&#xff1a;BOM物料清单生成器&#xff08;支持中文文件名、样式美化、数据合并&#…...

20250118拿掉荣品pro-rk3566开发板上Android13下在uboot和kernel启动阶段的Rockchip这个LOGO标识

20250118拿掉荣品pro-rk3566开发板上Android13下在uboot和kernel启动阶段的Rockchip这个LOGO标识 2025/1/18 15:12 缘起&#xff1a;做飞凌OK3588-C开发板/核心板【Linux R4】的时候&#xff0c;测试/生产要求没有开机LOGO【飞凌/Rockchip】 要求&#xff1a;黑屏或者中性界面。…...

《Hands_On_LLM》8.3: 检索增强生成-RAG技术概论

3.检索增强生成 (Retrieval-Augmented Generation (RAG)) LLM 的大规模应用很快导致人们向它们提问&#xff0c;并期望得到符合实际的答案。虽然这些模型可以正确回答一些问题&#xff0c;但它们也自信地回答了许多错误的问题。为了纠正这种行为&#xff0c;业界转而采用的主要…...

CSS中样式继承+优先级

继承属性和非继承属性 一、定义及分类 1、继承属性是指在父元素上设置了这些属性后&#xff0c;子元素会自动继承这些属性的值&#xff0c;除非子元素显式地设置了不同的值。 常见的继承属性: 字体 font 系列文本text-align text-ident line-height letter-spacing颜色 col…...

Vue进阶之旅:核心技术与页面应用实战(路由进阶)

文章目录 一、路由模块封装二、声明式导航&#xff08;一&#xff09;导航链接与高亮&#xff08;二&#xff09;声明式导航传参1. 查询参数传参2. 动态路由传参 三、路由重定向、404 与模式设置&#xff08;一&#xff09;路由重定向&#xff08;二&#xff09;路由 404&#…...

单片机存储器和C程序编译过程

1、 单片机存储器 只读存储器不是并列关系&#xff0c;是从ROM发展到FLASH的过程 RAM ROM 随机存储器 只读存储器 CPU直接存储和访问 只读可访问不可写 临时存数据&#xff0c;存的是CPU正在使用的数据 永久存数据&#xff0c;存的是操作系统启动程序或指令 断电易失 …...

Vue.js 动态设置表格最大高度的实现

概述 在现代 Web 开发中&#xff0c;响应式设计至关重要&#xff0c;尤其是在处理复杂的布局和数据表格时。表格通常会受到多种因素的影响&#xff0c;如分页、合计行或动态内容&#xff0c;这可能导致表格高度的变化。本文将介绍一个基于 Vue.js 的方法 setMaxHeight&#xf…...

Java测试开发平台搭建(九)前端

1. 搭建前端vue环境 Vue3 安装 | 菜鸟教程 2. 创建项目 1.进入ui vue ui 2. create项目 3. 成功之后添加插件&#xff1a; cli-plugin-router vue-cli-plugin-vuetify 4. 添加依赖 axios 5. 点击任务开始运行 如果报错&#xff1a; 修改vue.config.jsconst { defineConfig }…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...