当前位置: 首页 > news >正文

从 JIRA 数据到可视化洞察:使用 Python 创建自定义图表

引言

在项目管理和软件开发中,JIRA 是最广泛使用的工具之一,尤其是在追踪问题、任务和团队进度方面。对于开发者和团队来说,能够从 JIRA 中提取并分析数据,以便更好地理解项目状态和趋势,至关重要。虽然 JIRA 本身提供了一些基本的报告和图表功能,但有时我们需要更个性化、详细的数据分析。这时,借助 Python 强大的数据处理和可视化功能,您可以轻松地将 JIRA 数据转换为更具洞察力的图表。

在本文中,我们将介绍如何使用 Python 获取 JIRA 筛选器数据,并通过数据分析和图表生成的方式为您提供自定义的可视化解决方案。无论您是开发者、数据分析师还是项目经理,这些技能都将帮助您更好地洞察项目动态、追踪问题、并提升决策效率。


步骤一:获取 JIRA 数据

JIRA 提供了强大的 REST API,允许我们通过编程方式查询项目数据,尤其是使用 JQL(JIRA Query Language)来筛选我们感兴趣的问题。接下来,我们将展示如何使用 Python 的 requests 库调用 JIRA API,并获取筛选器结果。

1.1 设置 API 请求

首先,我们需要定义 JIRA 的 API 端点 URL,通常格式为:

https://your-jira-instance/rest/api/2/search

通过 JQL 查询语句,您可以自定义过滤条件。以下是一个简单的示例,假设我们要筛选“未解决的 bug”:

import requests
from requests.auth import HTTPBasicAuth
import json# JIRA API endpoint
url = "https://your-jira-instance/rest/api/2/search"# 输入您的 JIRA 账户的用户名和 API 密钥
auth = HTTPBasicAuth("your-email@example.com", "your-api-token")# 设置 JQL 查询语句
jql_query = {"jql": "project = 'YourProjectName' AND issuetype = Bug AND resolution = Unresolved","fields": "summary, status, priority, created, resolution","maxResults": 1000  # 设置返回结果的数量
}# 发起 API 请求
response = requests.get(url, headers={"Content-Type": "application/json"}, auth=auth, params=jql_query)if response.status_code == 200:issues = response.json()['issues']print(f"Successfully fetched {len(issues)} issues")
else:print(f"Error: {response.status_code}")
1.2 处理返回的数据

API 返回的数据通常是 JSON 格式。我们可以利用 json 库将其解析,并将关键信息提取出来,如问题的状态、优先级、创建时间等。接下来,使用 pandas 库对这些数据进行处理和分析。

import pandas as pd# 假设您已经从 JIRA API 获取了 issues 数据
issues = [{"key": "BUG-123","fields": {"summary": "Issue 1","status": {"name": "To Do"},"priority": {"name": "High"},"created": "2025-01-10T10:00:00.000+0000"}},# 更多 Bug 数据...
]# 将数据转换为 pandas DataFrame
df = pd.DataFrame([{'key': issue['key'],'status': issue['fields']['status']['name'],'priority': issue['fields']['priority']['name'],'created': issue['fields']['created']}for issue in issues
])# 按状态分组统计 Bug 的数量
status_count = df['status'].value_counts()
print(status_count)

步骤二:使用 Python 生成图表

获取数据后,接下来是数据的可视化。Python 提供了多个强大的图表库,如 matplotlibseaborn 等。在这篇博客中,我们将展示如何使用 matplotlib 创建一个简单的饼图来展示 Bug 状态分布。

2.1 使用 Matplotlib 创建饼图
import matplotlib.pyplot as plt# 绘制 Bug 状态分布的饼图
status_count.plot(kind='pie', autopct='%1.1f%%', figsize=(8, 8), title='Bug Status Distribution')
plt.ylabel('')  # 去掉 y 轴标签
plt.show()
2.2 使用 Seaborn 创建柱状图

如果您更喜欢条形图或柱状图来展示优先级分布,可以使用 seaborn 库,它提供了更美观的图形样式。

import seaborn as sns# 绘制 Bug 优先级分布的柱状图
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='priority', palette='viridis')
plt.title('Bug Priority Distribution')
plt.show()

通过这种方式,您可以清晰地看到每个状态和优先级下的 Bug 数量,从而做出更有数据支持的决策。


步骤三:自动化报告生成

为了方便定期查看分析结果,您可以将生成的图表保存为文件,并生成报告。比如,我们可以将图表保存为 PNG 文件,或者使用 Python 的 ReportLab 库生成 PDF 格式的报告。

3.1 保存图表为图片
# 保存图表到文件
status_count.plot(kind='pie', autopct='%1.1f%%', figsize=(8, 8), title='Bug Status Distribution')
plt.ylabel('')
plt.savefig('bug_status_pie_chart.png')
3.2 生成 PDF 报告

使用 ReportLab 库,您可以生成包含图表的 PDF 文件:

from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas# 创建 PDF 文件
pdf = canvas.Canvas("jira_bug_report.pdf", pagesize=letter)
pdf.drawString(100, 750, "JIRA Bug Report")
pdf.drawImage("bug_status_pie_chart.png", 100, 500, width=400, height=300)
pdf.save()

总结

通过使用 Python 的 requestspandasmatplotlibseaborn 库,您可以轻松地从 JIRA 中获取筛选器数据、进行数据处理,并生成可视化图表。这些图表不仅帮助您清晰地洞察项目的状态,还能为项目决策提供数据支持。

不仅如此,您还可以自动化这些操作,定期生成报告,提升工作效率。如果您是一名项目经理或开发者,掌握这些技能将帮助您更好地管理团队和项目,并作出数据驱动的决策。

现在,您可以开始将 JIRA 的数据转化为可视化的洞察,创造更加高效的工作流。


附加资源

  • JIRA REST API 官方文档
  • Matplotlib 文档
  • Seaborn 文档
  • Pandas 文档

相关文章:

从 JIRA 数据到可视化洞察:使用 Python 创建自定义图表

引言 在项目管理和软件开发中,JIRA 是最广泛使用的工具之一,尤其是在追踪问题、任务和团队进度方面。对于开发者和团队来说,能够从 JIRA 中提取并分析数据,以便更好地理解项目状态和趋势,至关重要。虽然 JIRA 本身提供…...

【网络原理】万字详解 HTTP 协议

🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. HTTP 前置知识1.1 HTTP 是什么1.2 HTPP 协议应用场景1.3 HTTP 协议工作过程 2. HTTP 协议格式2.1 fiddler…...

PHP企业IM客服系统

💬 企业IM客服系统——高效沟通,无缝连接的智慧桥梁 🚀 卓越性能,释放无限可能 在瞬息万变的商业环境中,我们深知沟通的力量。因此,基于先进的ThinkPHP5框架与高性能的Swoole扩展,我们匠心独运…...

Linux操作系统的灵魂,深度解析MMU内存管理

在计算机的奇妙世界里,我们每天使用的操作系统看似流畅自如地运行着各类程序,背后实则有着一位默默耕耘的 “幕后英雄”—— 内存管理单元(MMU)。它虽不常被大众所熟知,却掌控着计算机内存的关键命脉,是保障…...

PHP代码审计学习01

目录 两种思路 addslashes函数和magic_quotes_gpc配置: 今天来开php代码审计。 PHP无框架项目SQL注入挖掘技巧。 可以看看小迪老师的学习流程或者说是路线吧。 其中,最下面的代码审计工具推荐用下面两款,fortify,seay。 &…...

《数据思维》之数据可视化_读书笔记

文章目录 系列文章目录前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 前言 数据之道,路漫漫其修远兮,吾将上下而求索。 一、数据可视化 最基础的数据可视化方法就是统计图。一个好的统计图应该满足四个标准:准确、有…...

深度学习常见术语解释

正例与负例: 在分类任务中,通常将目标类别称为正例(positive),非目标类别称为负例(negative)。 True Positives(TP): 被正确地划分为正例的个数,…...

重温STM32之环境安装

缩写 CMSIS:common microcontroller software interface standard 1,keil mdk安装 链接 Keil Product Downloads 安装好后,开始安装平台软件支持包(keil 5后不在默认支持所有的平台软件开发包,需要自行下载&#…...

使用Flask和Pydantic实现参数验证

使用Flask和Pydantic实现参数验证 1 简介 Pydantic是一个用于数据验证和解析的 Python 库,版本2的性能有较大提升,很多框架使用Pydantic做数据校验。 # 官方参考文档 https://docs.pydantic.dev/latest/# Github地址 https://github.com/pydantic/pyd…...

python_在钉钉群@人员发送消息

python_在钉钉群人员发送消息 1、第一种 企业内部机器人群聊实现人接入指南,适用于群机器人接收消息,处理完一系列的动作之后,将消息返回给发消息的人员,同时该人员。 需要在企微后台新建一个自建应用,在自建应用里…...

C语言之装甲车库车辆动态监控辅助记录系统

🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 C语言之装甲车库车辆动态监控辅助记录系统 目录 一、前言 1.1 (一)…...

线性代数概述

矩阵与线性代数的关系 矩阵是线性代数的研究对象之一: 矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,是线性代数中的核心概念之一。矩阵的定义和性质构成了线性代数中矩阵理论的基础,而矩阵运算则简洁地表示和…...

使用 ChatGPT 生成和改进你的论文

文章目录 零、前言一、操作引导二、 生成段落或文章片段三、重写段落四、扩展内容五、生成大纲内容六、提高清晰度和精准度七、解决特定的写作挑战八、感受 零、前言 我是虚竹哥,目标是带十万人玩转ChatGPT。 ChatGPT 是一个非常有用的工具,可以帮助你…...

Linux命令行工具-使用方法

参考资料 Linux网络命令:网络工具socat详解-CSDN博客 arm-linux-gnueabihf、aarch64-linux-gnu等ARM交叉编译GCC的区别_aarch64-elf-gcc aarch64-linux-gnu-CSDN博客 解决Linux内核问题实用技巧之-dev/mem的新玩法-腾讯云开发者社区-腾讯云 热爱学习地派大星-CS…...

RV1126+FFMPEG推流项目(7)AI音频模块编码流程

一、AI 模块和外设麦克风的关系 AI 模块是 RV1126 芯片的一个重要组成部分。它的主要功能是将外部接入的麦克风采集到的模拟信号通过内置的驱动程序转换为数字信号。这意味着麦克风作为外设,提供音频输入信号,AI 模块通过其硬件和软件的结合&#xff0c…...

四、华为交换机 STP

生成树协议(STP)的核心目的是在存在冗余链路的网络中,构建一个无环的拓扑结构,从而防止网络环路带来的广播风暴等问题 一、STP 原理 选举根桥:网络中的每台交换机都会有一个唯一的桥 ID(BID)&am…...

服务器卡顿是否等同于遭受CC攻击?

在网站运营或应用服务过程中,遇到服务器响应缓慢或者卡顿时,很多管理员的第一反应是可能遭遇了CC(Challenge Collapsar)攻击。但实际情况往往更为复杂。本文将探讨服务器卡顿与CC攻击之间的关系,并提供一些基本的排查方…...

【机器学习实战入门】使用Pandas和OpenCV进行颜色检测

Python 颜色检测项目 今天的项目将非常有趣和令人兴奋。我们将与颜色打交道,并在项目过程中学习许多概念。颜色检测对于识别物体来说是必要的,它也被用作各种图像编辑和绘图应用的工具。 什么是颜色检测? 颜色检测是检测任何颜色名称的过程…...

一文大白话讲清楚webpack基本使用——1——完成webpack的初步构建

文章目录 一文大白话讲清楚webpack基本使用——1——完成webpack的初步构建1. 先回忆webpack是个啥2. webpack四大核心2.1 Entry(入口)2.2 Output(输出)2.3 Loader(加载器)2.4 Plugin(插件) 3. 按部就班实现webpack3.1 初始化项目3.2 完成项目骨架搭建3.3 实现webpack构建 一文…...

RabbitMQ基础篇

文章目录 1 RabbitMQ概述1.1 消息队列1.2 RabbitMQ体系结构 2 RabbitMQ工作模式2.1 简单模式(Simple Queue)2.2 工作队列模式(Work Queues)2.3 发布/订阅模式(Publish/Subscribe)2.4 路由模式(R…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...