音频入门(一):音频基础知识与分类的基本流程
音频信号和图像信号在做分类时的基本流程类似,区别就在于预处理部分存在不同;本文简单介绍了下音频处理的方法,以及利用深度学习模型分类的基本流程。
目录
一、音频信号简介
1. 什么是音频信号
2. 音频信号长什么样
二、音频的深度学习分类基本流程
一、音频信号简介
1. 什么是音频信号
音频信号是声音波形的电学表示,它可以捕捉声音的频率、幅度和时间特性。音频信号可以是模拟的,也可以是数字的:
-
模拟音频信号:
- 模拟音频信号是连续变化的电信号,它模拟了原始声音波形的物理特性。
- 它可以通过麦克风捕获,并通过扬声器、耳机或放大器进行播放。
- 模拟信号可以被录制在磁带、黑胶唱片等介质上。
-
数字音频信号:
- 数字音频信号是通过将模拟信号转换为一系列数字值来表示的,这个过程称为模数转换(ADC)。
- 数字音频信号通常以文件形式存储,如MP3、WAV、AAC等格式。
- 数字音频可以方便地进行编辑、处理和传输,且不受模拟信号的退化问题影响。
音频信号的基本属性包括:
- 采样率(Sampling Rate):每秒内捕获的样本数量,单位是赫兹(Hz)。常见的采样率有44.1 kHz(CD质量)、48 kHz等。
- 位深度(Bit Depth):每个样本的量化精度,单位是比特(bit)。常见的位深度有16位、24位等。
- 通道数(Channels):音频信号的声道数量,如单声道(Mono)、立体声(Stereo)或环绕声(Surround Sound)。
- 频率内容(Frequency Content):音频信号包含的频率范围,通常以赫兹(Hz)为单位。
- 幅度(Amplitude):信号的强度或大小,通常影响声音的响度。
2. 音频信号长什么样
我们送入计算机的,肯定是数字音频信号了。那么,如何读取一段音频,并看看它是如何表示的呢?
和图像领域用Opencv或PIL等库读取图片类似,音频领域也有些专门的库可以读取/处理音频。
常用的库有soundfile、librosa等。下面我们使用soundfile读取一段音频,并展示其波形图、频谱图:
import soundfile
import resampy
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import stftif __name__ == '__main__':audio_path = "/data/datasets/Audios/Golf_sound/1_batting/batting_240725_36.MP3"audio, sample_rate = soundfile.read(audio_path)print(audio.shape)print(sample_rate)audio_mean = np.mean(audio, 1)audio_resampled = resampy.resample(audio_mean, sample_rate, 16000, filter="kaiser_best")print(audio_resampled.shape)# 计算STFTfreqs, times, spectrogram = stft(audio_resampled, sample_rate)# 绘制波形图plt.figure(figsize=(10, 2))plt.title('Audio Waveform')plt.xlabel('Time (seconds)')plt.ylabel('Amplitude')plt.plot(audio[:, :])# 绘制频谱图plt.figure(figsize=(10, 4))plt.title('Audio Spectrogram')plt.xlabel('Time (seconds)')plt.ylabel('Frequency (Hz)')plt.imshow(np.abs(spectrogram), aspect='auto', origin='lower')plt.colorbar()
运行后会绘制两个图:音频的波形图和STFT频谱图。
可以看到,原始音频是多通道的(示例音频是2通道,不同可能会有不同通道数),每个通道都可以看成是个一维的时序信号。
二、音频的深度学习分类基本流程
那么我们如何对音频信号进行分类呢?在信号处理领域,通常会将原始信号转换为更容易捕获特征的频域信号,然后利用一些手工设计特征或者深度学习方法捕获的特征,送入分类器,然后得到各个类别的概率。
下面是一个从原始信号到最终类别概率的深度学习算法流程:
相关的深度学习模型有CAMPPlus、ResNetSE、Res2Net等,它们可以从频域特征提取更为高级的语义特征,然后利用一个FC层分类得到各个类别的概率。
模型论文(引自参考3):
- EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
- PANNS:PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
- TDNN:Prediction of speech intelligibility with DNN-based performance measures
- Res2Net:Res2Net: A New Multi-scale Backbone Architecture
- ResNetSE:Squeeze-and-Excitation Networks
- CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
- ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
参考:
1. Librosa: https://librosa.org/
2. python-soundfile — python-soundfile 0.11.0 documentation
3. https://github.com/yeyupiaoling/AudioClassification-Pytorch
相关文章:

音频入门(一):音频基础知识与分类的基本流程
音频信号和图像信号在做分类时的基本流程类似,区别就在于预处理部分存在不同;本文简单介绍了下音频处理的方法,以及利用深度学习模型分类的基本流程。 目录 一、音频信号简介 1. 什么是音频信号 2. 音频信号长什么样 二、音频的深度学习分…...
规避路由冲突
路由冲突是指在网络中存在两个或多个路由器在进行路由选择时出现矛盾,导致网络数据包无法正确传输,影响网络的正常运行。为了规避路由冲突,可以采取以下措施: 一、合理规划IP地址 分配唯一IP:确保每个设备在网络中都有…...

SQLmap 自动注入 -02
1: 如果想获得SQL 数据库的信息,可以加入参数: -dbs sqlmap -u "http://192.168.56.133/mutillidae/index.php?pageuser-info.php&usernamexiaosheng&passwordabc&user-info-php-submit-buttonViewAccountDetails" --batch -p username -dbs…...

4.JoranConfigurator解析logbak.xml
文章目录 一、前言二、源码解析GenericXMLConfiguratorlogback.xml解析通过SaxEvent构建节点model解析model节点DefaultProcessor解析model 三、总结 一、前言 上一篇介绍了logback模块解析logback.mxl文件的入口, 我们可以手动指定logback.xml文件的位置, 也可以使用其它的名…...
React 19 新特性总结
具体详见官网: 中文:React 19 新特性 英文:React 19 新特性 核心新特性 1. Actions 解决问题:简化数据变更和状态更新流程 以前需要手动处理待定状态、错误、乐观更新和顺序请求需要维护多个状态变量(isPending, error 等) 新…...

kafka学习笔记6 ACL权限 —— 筑梦之路
在Kafka中,ACL(Access Control List)是用来控制谁可以访问Kafka资源(如主题、消费者组等)的权限机制。ACL配置基于Kafka的kafka-acls.sh工具,能够管理对资源的读取、写入等操作权限。 ACL介绍 Kafka的ACL是…...
【Java】Java抛异常到用户界面公共封装
前言 在Java中处理代码运行异常是常见的技术点之一,我们大部分会使用封装的技巧将异常进行格式化输出,方便反馈给用户界面,也是为了代码复用 看看这行代码是怎么处理异常的 CommonExceptionType.SimpleException.throwEx("用户信息不…...

基于Redis实现短信验证码登录
目录 1 基于Session实现短信验证码登录 2 配置登录拦截器 3 配置完拦截器还需将自定义拦截器添加到SpringMVC的拦截器列表中 才能生效 4 Session集群共享问题 5 基于Redis实现短信验证码登录 6 Hash 结构与 String 结构类型的比较 7 Redis替代Session需要考虑的问题 8 …...

步入响应式编程篇(二)之Reactor API
步入响应式编程篇(二)之Reactor API 前言回顾响应式编程Reactor API的使用Stream引入依赖Reactor API的使用流源头的创建 reactor api的背压模式发布者与订阅者使用的线程查看弹珠图查看形成新流的日志 前言 对于响应式编程的基于概念,以及J…...

Oracle SQL: TRANSLATE 和 REGEXP_LIKE 的知识点详细分析
目录 前言1. TRANSLATE2. REGEXP_LIKE3. 实战 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 1. TRANSLATE TRANSLATE 用于替换字符串中指定字符集的每个字符,返回替换后的字符串 逐一映射输入字…...

RabbitMQ 在实际应用时要注意的问题
1. 幂等性保障 1.1 幂等性介绍 幂等性是数学和计算机科学中某些运算的性质,它们可以被多次应⽤,⽽不会改变初始应⽤的结果. 应⽤程序的幂等性介绍 在应⽤程序中,幂等性就是指对⼀个系统进⾏重复调⽤(相同参数),不论请求多少次,这些请求对系统的影响都是相同的效果. ⽐如数据库…...

算法日记8:StarryCoding60(单调栈)
一、题目 二、解题思路: 题意为让我们找到每个元素的左边第一个比它小的元素,若不存在则输出-1 2.1法一:暴力(0n2) 首先,我们可以想到最朴素的算法:直接暴力两层for达成目标核心代码如下&…...

大象机器人发布首款穿戴式数据采集器myController S570,助力具身智能数据收集!
myController S570 具有较高的数据采集速度和远程控制能力,大大简化了人形机器人的编程。 myController S570 是一款可移动的轻量级外骨骼,具有 14 个关节、2 个操纵杆和 2 个按钮,它提供高数据采集速度,出色的兼容性,…...

【银河麒麟高级服务器操作系统】业务访问慢网卡丢包现象分析及处理过程
了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:product.kylinos.cn 开发者专区:developer.kylinos.cn 文档中心:document.kylinos.cn 交流论坛:forum.kylinos.cn 服务器环境以及配置 【内核版本…...

C语言之饭店外卖信息管理系统
🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 C语言之饭店外卖信息管理系统 目录 设计题目设计目的设计任务描述设计要求输入和输出要求验…...

记一次 .NET某数字化协同管理系统 内存暴涨分析
一:背景 1. 讲故事 高级调试训练营里的一位朋友找到我,说他们跑在linux上的.NET程序出现了内存泄露的情况,上windbg观察发现内存都是IMAGE给吃掉了,那些image都标记了 doublemapper__deleted_ 字样,问我为啥会这样&a…...

部门管理查询部门,nginx反向代理,前端如何访问到后端Tomcat 注解@RequestParam
接口开发 增删改通常是不用返回data数据,返回null 列表查询-结果封装,时间 前后端联调测试 nginx反向代理,前端如何访问到后端Tomcat服务器 删除部门...
JS通过ASCII码值实现随机字符串的生成(可指定长度以及解决首位不出现数值)
在之前写过一篇“JS实现随机生成字符串(可指定长度)”,当时写的过于简单和传统,比较粗放。此次针对此问题,对随机生成字符串的功能进行优化处理,对随机取到的字符都通过程序自动来完成。 在写之前ÿ…...

速通Docker === 快速部署Redis主从集群
目录 镜像仓库介绍 持久化你的数据库 连接到其他容器 创建自定义网络 部署主节点 部署从节点 验证部署 总结 在现代应用架构中,Redis作为一个高性能的内存数据库,被广泛应用于缓存、会话存储、实时分析等多个领域。为了提高Redis的可用性和数据的…...

论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(一)
Understanding Diffusion Models: A Unified Perspective(一) 文章概括引言:生成模型背景:ELBO、VAE 和分层 VAE证据下界(Evidence Lower Bound)变分自编码器 (Variational Autoencoders&#x…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...