机器学习 vs 深度学习
目录
一、机器学习
1、实现原理
2、实施方法
二、深度学习
1、与机器学习的联系与区别
2、神经网络的历史发展
3、神经网络的基本概念
一、机器学习
1、实现原理
训练(归纳)和预测(演绎)
- 归纳: 从具体案例中抽象一般规律。从一定数量的样本(已知模型输入x和模型输出y)中,学习输出y与输入x的关系(可以想象成是某种表达式)。
- 演绎: 从一般规律推导出具体案例的结果,机器学习中的“预测”亦是如此。基于训练得到的y与x之间的关系,对新的输入x,计算出输出y。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。
2、实施方法

三个关键要素: 假设、 评价、 优化
- 模型假设:世界上的可能关系千千万,漫无目标的试探与X之间的关系显然是十分低效的。因此先圈定一个模型能够表达的关系可能,然后机器会进步在假设范围内寻找最优的 Y~X关系,即确定参数w。
- 评价函数:即定义损失函数。寻找最优之前,我们需要先定义什么是最优,即评价一个Y~X关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。
- 优化算法:例如梯度下降。设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的 Y~X关系找出来,这个寻找最优解的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果
二、深度学习
1、与机器学习的联系与区别
二者在理论结构上是一致的,即:模型假设、评价函数和优化算法;
其根本差别在于假设的复杂度。如下图所示的图像识别问题,给出一张美女照片,人脑可以接收到五颜六色的光学信号,能快速反应出这张图片是一位美女。但对计算机而言,只能接收到一个数字矩阵,对于美女这种高级的语义概念,从像素到高级语义概念中间要经历的信息变换非常复杂,这种变换已经无法用数学公式表达。

在深度学习兴起之前, 很多领域建模的思路是投入大量精力做特征工程, 将专家对某个领域的“人工理解” 沉淀成特征表达, 然后使用简单模型完成任务(如分类或回归)。
而在数据充足的情况下, 深度学习模型可以实现端到端的学习, 即不需要专门做特征工程, 将原始的特征输入模型中, 模型可同时完成特征提取和分类任务。

2、神经网络的历史发展

3、神经网络的基本概念
人工神经网络包括多个神经网络层, 如: 全连接层、 卷积层、 循环层等, 每一层又包括很多神经元, 超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲, 深度学习的模型可以视为是输入到输出的映射函数, 如图像到高级语义(美女) 的映射, 足够深的神经网络理论上可以拟合任何复杂的函数。
神经元:
- 神经网络中每个节点称为神经元, 由两部分组成:
1)加权和: 将所有输入加权求和;
2)非线性变换(激活函数): 加权和的结果经过一个非线性函数变换, 让神经元计算具备非线性的能力
多层连接:
- 大量这样的节点按照不同的层次排布, 形成多层的结构连接起来, 即称为神经网络
前向计算:
- 从输入计算输出的过程, 顺序从网络前至后
计算图:
- 以图形化的方式展现神经网络的计算逻辑又称为计算图, 也可以将神经网络的计算图以公式的方式表达
相关文章:
机器学习 vs 深度学习
目录 一、机器学习 1、实现原理 2、实施方法 二、深度学习 1、与机器学习的联系与区别 2、神经网络的历史发展 3、神经网络的基本概念 一、机器学习 1、实现原理 训练(归纳)和预测(演绎) 归纳: 从具体案例中抽象一般规律…...
flutter_学习记录_00_环境搭建
1.参考文档 Mac端Flutter的环境配置看这一篇就够了 flutter的中文官方文档 2. 本人环境搭建的背景 本人的电脑的是Mac的,iOS开发,所以iOS开发环境本身是可用的;外加Mac电脑本身就会配置Java的环境。所以,后面剩下的就是&#x…...
SpringBoot如何自定义Starter ?
大家好,我是锋哥。今天分享关于【SpringBoot如何自定义Starter ?】面试题。希望对大家有帮助; SpringBoot如何自定义Starter ? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Spring Boot 中,自定义 Starter 是一种将应用程…...
前沿技术对比:大模型技术为什么发展远快于区块链技术,中英对照解释
文章目录 前言1、技术复杂性与成熟度 / Technical Complexity and Maturity2.、应用场景与行业需求 / Application Scenarios and Industry Demand3、监管与法律问题 / Regulatory and Legal Issues4、去中心化与网络效应 / Decentralization and Network Effects5、能源消耗与…...
WordPress果果对象存储插件
将网站上的图片等静态资源文件上传至七牛云对象存储,可以减轻服务器文件存储压力,提升静态文件访问速度,从而加速网站访问速度。 支持:阿里云对象存储、华为云对象存储、百度云对象存储、腾讯云对象存储、七牛云对象存储。 下载…...
elk 安装
创建elk网络 docker network create -d bridge elkelasticsearch 创建目录 mkdir -p /data/elasticsearch/{conf,logs,data,plugins}vim /data/elasticsearch/conf/elasticsearch.ymlcluster.name: "es-cluster" network.host: 0.0.0.0 xpack.security.enabled: tr…...
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
大语言模型是一种由包含数百亿甚至更多参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标签文本进行训练,是深度学习之后的又一大人工智能技术革命。 大语言模型的发展主要经历了基础模型阶段(2018 年到2021年)、能力探索阶段(2019年…...
OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 转换图像以补偿镜头畸变。 该函数通过变换图像来补偿径向和切向镜头畸变。 此函数仅仅是 initUndistortRectifyMap(使用单位矩阵 R…...
用 Java 发送 HTML 内容并带附件的电子邮件
实现思路 首先,设置邮件服务器的相关属性,包括是否需要认证、使用的邮件协议、服务器地址、端口等。 创建一个会话对象,使用 Session.getInstance 方法,并提供邮件服务器的属性和认证信息。 创建一个 MimeMessage 对象作为邮件消…...
【Day24 LeetCode】贪心Ⅱ
一、贪心Ⅱ 1、买卖股票的最佳时机 II 122 这题第一想法是使用动态规划做,每天有两个状态,持有股票和非持有股票,每次计算这两个状态下的最优值。 class Solution { public:int maxProfit(vector<int>& prices) {//表示当前 没有…...
vue3+elementPlus之后台管理系统(从0到1)(day3-管理员管理)
管理员管理 搭建管理员页面 在views中创建一个manager文件夹,并创建ManagerIndexView.vue、MangagerListView.vue、UserList.vue <!-- src/views/manager/ManagerIndexView.vue --> <template><!-- 作为一个占位符,用于渲染与当前 URL…...
上位机知识篇---ROS2命令行命令静态链接库动态链接库
文章目录 前言第一部分:ROS2命令行命令1. 基础命令(1)ros2 run(2)ros2 launch(3)ros2 node(4)ros2 topic(5)ros2 service(6࿰…...
2025/1/21 学习Vue的第四天
睡觉。 --------------------------------------------------------------------------------------------------------------------------------- 11.Object.defineProperty 1.在我们之前学习JS的时候,普通得定义一个对象与属性。 <!DOCTYPE html> <h…...
云计算、AI与国产化浪潮下DBA职业之路风云变幻,如何谋破局启新途?
引言 在近日举办的一场「云和恩墨大讲堂」直播栏目中,云和恩墨联合创始人李轶楠、副总经理熊军和欧冶云商数据库首席薛晓刚共同探讨了DBA的现状与未来发展。三位专家从云计算、人工智能、国产化替代等多个角度进行了深入的分析和探讨,为从业者提供了宝贵…...
Linux内核编程(二十一)USB驱动开发-键盘驱动
一、驱动类型 USB 驱动开发主要分为两种:主机侧的驱动程序和设备侧的驱动程序。一般我们编写的都是主机侧的USB驱动程序。 主机侧驱动程序用于控制插入到主机中的 USB 设备,而设备侧驱动程序则负责控制 USB 设备如何与主机通信。由于设备侧驱动程序通常与…...
模拟算法习题篇
在算法中,模拟是一种通过计算机程序来模拟现实世界中的过程或系统行为的方法。它的核心思想是根据题目给定的规则和逻辑,按照步骤细致地重现事件的发展流程,从而获得最终结果。 解题时如何使用模拟算法: 理解题目规则:…...
蓝桥杯真题 - 翻转 - 题解
题目链接:https://www.lanqiao.cn/problems/3520/learning/ 个人评价:难度 1 星(满星:5) 前置知识:无 整体思路 贪心,除了第一位跟最后一位,其它字符,每当 S [ i ] ≠…...
IP属地与视频定位位置不一致:现象解析与影响探讨
在数字化时代,IP属地和视频定位位置已成为我们获取网络信息、判断内容真实性的重要依据。然而,有时我们会发现,某些视频内容中展示的定位位置与其发布者的IP属地并不一致。这种不一致现象引发了广泛的关注和讨论。本文旨在深入剖析IP属地与视…...
管道符、重定向与环境变量
个人博客站—运维鹿: http://www.kervin24.top CSDN博客—做个超努力的小奚: https://blog.csdn.net/qq_52914969?typeblog 一、重定向 将命令和文件结合 标准输入重定向(STDIN,文件描述符为0):默认从键盘输入&am…...
可扩展性设计架构模式——开闭原则
1. 概述 在架构设计中,遵循开闭原则(Open/Closed Principle, OCP),代码应该“对扩展开放,对修改关闭”是实现可扩展性的关键。这个原则指导我们设计系统时,应使其对新增功能开放,而对现有代码的修改封闭。这…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

