当前位置: 首页 > news >正文

完全平方数——唯一分解定理

文章目录

  • 一、唯一分解定理是什么?
    • 1.定义
    • 2.示例
    • 3.代码模板
  • 二、例题
    • 1>问题描述(2021蓝桥杯省赛)
      • 输入格式
      • 输出格式
      • 样例输入 1
      • 样例输出 1
      • 样例输入 2
      • 样例输出 2
      • 评测用例规模与约定
    • 2>解题思路
    • 3>假娃
    • 3>C嘎嘎

一、唯一分解定理是什么?

1.定义

唯一分解定理是数论中的一个重要定理,它告诉我们:

任何大于 1 的正整数,都可以唯一分解为若干个质数的乘积(忽略排列顺序)。

数学表达式:
对于任意正整数 ( n > 1 ) ( n > 1 ) (n>1),可以表示为:
n = p 1 e 1 × p 2 e 2 × ⋯ × p k e k n = p_1^{e_1} \times p_2^{e_2} \times \cdots \times p_k^{e_k} n=p1e1×p2e2××pkek
其中:

  • ( p 1 , p 2 , … , p k ) ( p_1, p_2, \dots, p_k ) (p1,p2,,pk) 是质数;
  • ( e 1 , e 2 , … , e k ) ( e_1, e_2, \dots, e_k ) (e1,e2,,ek) 是正整数;

2.示例

  1. 12 的分解
    12 = 2 2 × 3 1 12 = 2^2 \times 3^1 12=22×31
    质因数是 2 2 2 3 3 3

  2. 100 的分解
    100 = 2 2 × 5 2 100 = 2^2 \times 5^2 100=22×52
    质因数是 2 2 2 5 5 5
    修改后的格式如下:

  3. 97 的分解
    97 = 9 7 1 97 = 97^1 97=971
    97 97 97 是质数,本身就是唯一分解。


3.代码模板

import java.util.*;
public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n=sc.nextInt();//Math.sqrt(n)可以进行时间优化for(int i=2;i<=Math.sqrt(n);i++){if(n%i==0){int count=0;//记录当前质数i的幂次while(n%i==0){count++;n/=i;//除掉所有因子i}System.out.println(i+" "+count);//输出对应的因子 以及 它的幂次}}if(n>1){//如果没有除完,最后一个数一定是质因子System.out.println(n+" "+1);//输出对应的因子 以及 它的幂次}}
}

二、例题

1>问题描述(2021蓝桥杯省赛)

一个整数 a a a 是一个完全平方数,是指它是某一个整数的平方,即存在一个整数 b b b,使得 a = b 2 a = b^2 a=b2

给定一个正整数 n n n,请找到最小的正整数 x x x,使得它们的乘积是一个完全平方数。


输入格式

输入一行包含一个正整数 n n n


输出格式

输出找到的最小的正整数 x x x


样例输入 1

12

样例输出 1

3

样例输入 2

15

样例输出 2

15

评测用例规模与约定

  • 对于 30 的评测用例, 1 ≤ n ≤ 1000 1 \leq n \leq 1000 1n1000,答案不超过 1000 1000 1000
  • 对于 60 的评测用例, 1 ≤ n ≤ 1 0 8 1 \leq n \leq 10^8 1n108,答案不超过 1 0 8 10^8 108
  • 对于所有评测用例, 1 ≤ n ≤ 1 0 12 1 \leq n \leq 10^{12} 1n1012,答案不超过 1 0 12 10^{12} 1012

2>解题思路

根据题意分析,我们要求最小的 x x x 使得 x × n x\times n x×n 是一个完全平方数。 显而易见的是,最坏情况, x x x 只能是 n n n本身。因此我们只需要在整数 n n n 以内去寻找最小的 x x x 即可。 结合唯一分解定理,任何一个大于1的整数,一定可以分解成一个或者多个质数(也叫素数)相乘。如果一个数是完全平方数,则经过唯一分解后,其质因子的幂次一定是偶数! 例如:

  1. 36 36 36 的分解
    36 = 2 2 × 3 2 36 = 2^2 \times 3^2 36=22×32
    幂次: 2 , 2 2, 2 2,2(都是偶数)
    因此, 36 36 36 是完全平方数。

  2. 144 144 144 的分解
    144 = 2 4 × 3 2 144 = 2^4 \times 3^2 144=24×32
    幂次: 4 , 2 4, 2 4,2(都是偶数)
    因此, 144 144 144 是完全平方数。

  3. 81 81 81 的分解
    81 = 3 4 81 = 3^4 81=34
    幂次: 4 4 4(是偶数)
    因此, 81 81 81 是完全平方数。

  4. 100 100 100 的分解
    100 = 2 2 × 5 2 100 = 2^2 \times 5^2 100=22×52
    幂次: 2 , 2 2, 2 2,2(都是偶数)
    因此, 100 100 100 是完全平方数。

  5. 72 72 72 的分解(反例)
    72 = 2 3 × 3 2 72 = 2^3 \times 3^2 72=23×32
    幂次: 3 , 2 3, 2 3,2 3 3 3 不是偶数)
    因此, 72 72 72 不是完全平方数。

至此,解题思路就很明了啦。唯一分解给定的 n n n 寻找其质因子,如果质因子对应的幂次是奇数,则需要补齐对应的一个质因子,把它累乘到答案中即可。


3>假娃

import java.util.*;// 1:无需package
// 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);//测试用例数据规模比较大,必须用longlong ans=1;long n=sc.nextLong();for(long i=2;i<=Math.sqrt(n);i++){if(n%i==0){long count=0;while(n%i==0){count++;n/=i;}if(count%2==1){ans*=i;}}}if(n>1)ans*=n;System.out.println(ans);}
}

3>C嘎嘎

#include <iostream>
#include <cmath> // 用于 sqrt 函数
using namespace std;int main() {long long ans = 1; // 用 long long 处理大数long long n;cin >> n; // 输入 nfor (long long i = 2; i <= sqrt(n); i++) {if (n % i == 0) { // 判断是否为因子long long count = 0;while (n % i == 0) { // 统计当前因子的幂次count++;n /= i;}if (count % 2 == 1) { // 如果幂次是奇数ans *= i;}}}if (n > 1) ans *= n; // 如果 n 还大于 1,则 n 本身是一个质数cout << ans << endl; // 输出结果return 0;
}

请添加图片描述

相关文章:

完全平方数——唯一分解定理

文章目录 一、唯一分解定理是什么&#xff1f;1.定义2.示例3.代码模板 二、例题1>问题描述&#xff08;2021蓝桥杯省赛&#xff09;输入格式输出格式样例输入 1样例输出 1样例输入 2样例输出 2评测用例规模与约定 2>解题思路3>假娃3>C嘎嘎 一、唯一分解定理是什么&…...

(详细)Springboot 整合动态多数据源 这里有mysql(分为master 和 slave) 和oracle,根据不同路径适配不同数据源

文章目录 Springboot 整合多动态数据源 这里有mysql&#xff08;分为master 和 slave&#xff09; 和oracle1. 引入相关的依赖2. 创建相关配置文件3. 在相关目录下进行编码&#xff0c;不同路径会使用不同数据源 Springboot 整合多动态数据源 这里有mysql&#xff08;分为maste…...

mock可视化生成前端代码

介绍&#xff1a;mock是我们前后端分离的必要一环、ts、axios编写起来也很麻烦。我们就可以使用以下插件&#xff0c;来解决我们的问题。目前支持vite和webpack。&#xff08;配置超级简单&#xff01;&#xff09; 欢迎小伙伴们提issues、我们共建。提升我们的开发体验。 vi…...

Spring Boot(6)解决ruoyi框架连续快速发送post请求时,弹出“数据正在处理,请勿重复提交”提醒的问题

一、整个前言 在基于 Ruoyi 框架进行系统开发的过程中&#xff0c;我们常常会遇到各种有趣且具有挑战性的问题。今天&#xff0c;我们就来深入探讨一个在实际开发中较为常见的问题&#xff1a;当连续快速发送 Post 请求时&#xff0c;前端会弹出 “数据正在处理&#xff0c;请…...

鸿蒙Harmony json转对象(1)

案例1 运行代码如下 上图的运行结果如下: 附加1 Json_msg interface 案例2 import {JSON } from kit.ArkTS; export interface commonRes {status: numberreturnJSON: ESObject;time: string } export interface returnRes {uid: stringuserType: number; }Entry Component …...

常见的RocketMQ面试题及其简要答案

以下是一些常见的RocketMQ面试题及其简要答案&#xff1a; 一、基础概念与架构 简述RocketMQ是什么&#xff0c;并说明其主要作用。 答案&#xff1a; RocketMQ&#xff1a;是阿里巴巴在2012年开源的一款分布式消息中间件&#xff0c;目前已经捐赠给Apache软件基金会&#xff…...

C#Object类型的索引,序列化和反序列化

前言 最近在编写一篇关于标准Mes接口框架的文章。其中有一个非常需要考究的内容时如果实现数据灵活和可使用性强。因为考虑数据灵活性&#xff0c;所以我一开始选取了Object类型作为数据类型&#xff0c;Object作为数据Value字段&#xff0c;String作为数据Key字段&#xff0c…...

Unity3D项目开发中的资源加密详解

前言 在Unity3D游戏开发中&#xff0c;保护游戏资源不被非法获取和篡改是至关重要的一环。资源加密作为一种有效的技术手段&#xff0c;可以帮助开发者维护游戏的知识产权和安全性。本文将详细介绍Unity3D项目中如何进行资源加密&#xff0c;并提供相应的技术详解和代码实现。…...

微调Qwen2:7B模型,加入未知信息语料

对于QWen2这样的模型,在微调的时候,语料的投喂格式满足ChatML这样的格式!!! OpenAI - ChatML: 下面是ChatML格式的介绍: https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.mdhttps://github.com/openai/openai-python/blob/release-v0.28.0/chat…...

【Ubuntu】安装SSH启用远程连接

【Ubuntu】安装OpenSSH启用远程连接 零、安装软件 使用如下代码安装OpenSSH服务端&#xff1a; sudo apt install openssh-server壹、启动服务 使用如下代码启动OpenSSH服务端&#xff1a; sudo systemctl start ssh贰、配置SSH&#xff08;可跳过&#xff09; 配置文件 …...

【理论】测试开发工程师进阶路线

一、腾讯与阿里的质量保证服务参考 阿里云效测试能力与架构 腾讯 WeTest 测试能力全景图 二、测试开发技术体系 1.用户端测试&#xff1a; Web/App 测试 Web/App 自动化测试 用户端专项测试 用户端安全测试 2.服务端测试&#xff1a; 接口协议与 Mock 接口自动化测试 服务端…...

【BQ3568HM开发板】如何在OpenHarmony上通过校园网的上网认证

引言 前面已经对BQ3568HM开发板进行了初步测试&#xff0c;后面我要实现MQTT的工作&#xff0c;但是遇到一个问题&#xff0c;就是开发板无法通过校园网的认证操作。未认证的话会&#xff0c;学校使用的深澜软件系统会屏蔽所有除了认证用的流量。好在我们学校使用的认证系统和…...

動態住宅IP提升網站訪問成功率

動態住宅IP通常與普通家庭用戶的網路連接相關聯。這種IP地址的特點在於&#xff0c;它是動態變化的&#xff0c;用戶在每次連接時可能會獲得不同的IP地址。這與靜態IP形成了鮮明對比&#xff0c;後者在連接期間保持不變。傳統上&#xff0c;IP地址分為住宅IP和數據中心IP兩類。…...

2024年博客之星主题创作|2024年蓝桥杯与数学建模年度总结与心得

引言 2024年&#xff0c;我在蓝桥杯编程竞赛和数学建模竞赛中投入了大量时间和精力&#xff0c;这两项活动不仅加深了我对算法、数据结构、数学建模方法的理解&#xff0c;还提升了我的解决实际问题的能力。从蓝桥杯的算法挑战到数学建模的复杂应用&#xff0c;我在这些竞赛中…...

Spring Boot/MVC

一、Spring Boot的创建 1.Spring Boot简化Spring程序的开发,使用注解和配置的方式开发 springboot内置了tomact服务器 tomact:web服务器,默认端口号8080,所以访问程序使用8080 src/main/java:Java源代码 src/main/resource:静态资源或配置文件,存放前端代码(js,css,html) s…...

由于请求的竞态问题,前端仔喜提了一个bug

在平常的开发过程中&#xff0c;你可能会遇到这样一个bug。 测试&#xff1a;我在测一个输入框搜索的功能时&#xff0c;告诉你通过输入框输入的内容&#xff0c;和最终通过输入内容搜索出来的结果对不上。 前端&#xff1a;我是通过调用后端接口拿到的数据&#xff0c;这明显…...

【Day25 LeetCode】贪心Ⅲ

一、贪心Ⅲ 1、加油站 134 这道题直接想法是采用二重循环暴力搜索&#xff0c;简单粗暴但是会超时&#xff0c;是因为以每个点为起点最坏的情况可能都要遍历完全部的序列&#xff0c;有大量重复的操作&#xff0c;那有没有优化的地方呢&#xff1f;有一个结论&#xff1a;如果…...

蓝桥杯练习日常|递归-进制转换

未完待续&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c; 目录 蓝桥云课760数的计算 一、递归 题目&#xff1a; 我的解题代码&#xff1a; 二、进制转换 任意进制转十进制&#xff1a; 十进制转换为其他进制&#xff1a; 进制蓝桥杯题目…...

AI Agent:深度解析与未来展望

一、AI Agent的前世&#xff1a;从概念到萌芽 &#xff08;一&#xff09;早期探索 AI Agent的概念可以追溯到20世纪50年代&#xff0c;早期的AI研究主要集中在简单的规则系统上&#xff0c;这些系统的行为是确定性的&#xff0c;输出由输入决定。随着时间的推移&#xff0c;…...

《SwinIR:使用Swin-Transformer图像恢复》学习笔记

paper&#xff1a;2108.10257 GitHub&#xff1a;GitHub - JingyunLiang/SwinIR&#xff1a; SwinIR&#xff1a; 使用 Swin Transformer 进行图像修复 &#xff08;官方仓库&#xff09; 目录 摘要 1、Introduction 2、Related Work 2.1 图像修复 2.2 视觉Transformer…...

如何在Nginx服务器上配置访问静态文件目录并提供文件下载功能

引言 在搭建网站的过程中&#xff0c;我们经常需要让访客通过URL直接访问或下载存储在服务器特定目录下的静态文件。本文将详细介绍如何在Nginx服务器环境中配置一个名为"download"的文件目录&#xff0c;以便用户能够通过浏览器访问并下载其中的手册和其他文档。 …...

ansible自动化运维实战--script、unarchive和shell模块(6)

文章目录 一、script模块1.1、功能1.2、常用参数1.3、举例 二、unarchive模块2.1、功能2.2、常用参数2.3、举例 三、shell模块3.1、功能3.2、常用参数3.3、举例 一、script模块 1.1、功能 Ansible 的 script 模块允许你在远程主机上运行本地的脚本文件&#xff0c;其提供了一…...

理解深度学习pytorch框架中的线性层

文章目录 1. 数学角度&#xff1a; y W x b \displaystyle y W\,x b yWxb示例 2. 编程实现角度&#xff1a; y x W T b \displaystyle y x\,W^T b yxWTb3. 常见错误与易混点解析4. 小结参考链接 在神经网络或机器学习的线性层&#xff08;Linear Layer / Fully Connect…...

电路研究9.2——合宙Air780EP使用AT指令

这里正式研究AT指令的学习了&#xff0c;之前只是接触的AT指令&#xff0c;这里则是深入分析AT指令了。 软件的开发方式&#xff1a; AT&#xff1a;MCU 做主控&#xff0c;MCU 发 AT 命令给模组的开发方式&#xff0c;模组仅提供标准的 AT 固件&#xff0c; 所有的业务控制逻辑…...

Qt数据库相关操作

目录 一、前言 二、类与接口介绍 1.连接管理类 2.数据操作类 3.数据模型类 4.其它类 三、主要操作流程 1.示例 2.绑定参数 3.事务操作 一、前言 要在Qt中操作数据库&#xff0c;首先要安装对应的数据库&#xff0c;还要确保安装了Qt SQL模块。使用MySQL时&#xff0…...

2025-01-22 Unity Editor 1 —— MenuItem 入门

文章目录 1 Editor 文件夹2 MenuItem3 使用示例3.1 打开网址3.2 打开文件夹3.3 Menu Toggle3.4 Menu 代码复用3.5 MenuItem 激活与失活4 代码示例 1 Editor 文件夹 ​ Editor 文件夹是 Unity 中的特殊文件夹&#xff0c;Unity 中所有编辑器相关的脚本都需要放置在其中&#xf…...

解锁C#编程新姿势:Z.ExtensionMethods入门秘籍

一、引言 在 C# 的开发旅程中&#xff0c;我们常常会遇到各种重复性高、复杂度低的任务&#xff0c;这些任务虽然基础&#xff0c;但却占据了我们大量的开发时间。比如处理字符串时&#xff0c;经常需要进行非空判断、格式转换&#xff1b;操作日期时间时&#xff0c;计算某个…...

不使用 JS 纯 CSS 获取屏幕宽高

前言 在现代前端开发中&#xff0c;获取屏幕的宽度和高度通常依赖于 JavaScript。然而现代 CSS 也可以获取到屏幕的宽高&#xff0c;通过自定义属性&#xff08;CSS Variables&#xff09;和一些数学函数来实现这一目标。本文将详细解析如何使用 CSS 的 property 规则和一些数…...

Node.js NativeAddon 构建工具:node-gyp 安装与配置完全指南

Node.js NativeAddon 构建工具&#xff1a;node-gyp 安装与配置完全指南 node-gyp Node.js native addon build tool [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/no/node-gyp 项目基础介绍及主要编程语言 Node.js NativeAddon 构建工具&#xff08;node-gyp…...

【ARTS】【LeetCode-704】二分查找算法

目录 前言 什么是ARTS&#xff1f; 算法 力扣704题 二分查找 基本思想&#xff1a; 二分查找算法(递归的方式): 经典写法(找单值): 代码分析: 经典写法(找数组即多个返回值) 代码分析 经典题目 题目描述&#xff1a; 官方题解 深入思考 模版一 (相错终止/左闭右闭) 相等返回情形…...