C++红黑树详解
文章目录
- 红黑树
- 概念
- 规则
- 为什么最长路径不超过最短路径的二倍?
- 红黑树的时间复杂度
- 红黑树的结构
- 插入
- 叔叔节点情况的讨论
- 只变色(叔叔存在且为红)
- 抽象的情况
- 变色+单旋(叔叔不存在或叔叔存在且为黑)
- 变色+双旋(叔叔不存在或叔叔存在且为黑)
- 判断是不是红黑树
- 代码
红黑树
概念
红黑树保证了最长的路径不超过最短路径的二倍
规则
- 根节点是黑色的
- 每个节点不是红色就是黑色
- 如果有一个节点是红的,那么它的两个孩子都是黑的,就是说一条路径不会有两个连续的红色节点(不会出现红红,其他情况可以出现红黑,黑黑,黑红)
- 对于每个节点到其空节点上的简单路径,每一条路径上都有相同数量的黑色节点
为什么最长路径不超过最短路径的二倍?
- 最短路径就是全黑
- 最长路径就是一黑一红的组合
- 假设每条路径有x个黑色的节点
最短:x
最长:2*x
这是最极端的场景 - 其它的场景都在最短和最长之间
比如下面这幅图:
最短:3
最长:4
最长路径不超过最短路径的2倍
路径的条数(要算到走到空的场景):9条路径
其它书里可能出现下面的图:
这样是为了计算路径的条数更加方便,防止算错
加了这样的空节点也不违反规则
红黑树的时间复杂度
假设节点个数为N
用极端的场景来算
红黑树最短路径的高度为:2^h-1 = N, h = log(N+1)
最长路径的高度为:2^2h-1 = N,h = (log(N+1))/2
其实最快可以近似为logN,最慢可以近似为2*logN,
整体上时间复杂度还是logN,只是没有AVL树那么接近logN
红黑树的结构
// 枚举红黑树的颜色
enum Colour
{RED,BLACK
};// 按Key/Value的模式实现
template<class K,class V>
class RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;RBTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr){}
};template<class K,class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:private:Node* _root = nullptr;
};
插入
插入红色节点还是黑色节点呢?
- 插入红色节点可能违反规则3,红色节点的父亲可能是红色节点,父亲是黑色节点就不用管
- 插入时黑色节点必然会违反规则4,每条路径上都要有相同数量的黑色节点
- 按二叉搜索树的规则插入,不违反上面的4条规则
- 如果是空树插入,则插入黑色节点。如果是非空树插入,必然插入红色,因为黑色违反规则4
- 插入红色节点,如果父亲是黑色节点,不违反规则,插入结束
- 插入红色节点,如果父亲是红色节点,违反规则3。
插入节点c必然是红色,父亲节点p也是红色,因为之前也要遵循红黑树的规则,所以爷爷节点g也要是黑色,是红色之前就违反规则了。所以c,p,g三个节点的颜色是固定的。
先在关键看叔叔节点u了,u可以是红色,也可以是黑色,所以要分情况讨论叔叔节点的颜色。
叔叔节点情况的讨论
只变色(叔叔存在且为红)
- c为红,p为红,g为黑,u存在且为红。将p变黑,因为红红违反了规则3,p必须变红。u也变黑,g变红。
- 把g当做c继续向上更新,需要继续向上更新是因为如果g的父亲还是红色,就需要继续向上处理;如果g的父亲是黑色,就处理结束;如果g就是整棵树的根,再把g变为黑色。
抽象的情况
- 叔叔存在且为红,(a和b是抽象出来的子树)a和b要满足下面的模版,爷爷的两个孩子都是红色,才满足只变色
- 抽象的情况:
- bh(black height),bh == 0
- bh == 1
- bh == 2
变色+单旋(叔叔不存在或叔叔存在且为黑)
p,c是红,g是黑,u不存在或者u存在且为黑
- u不存在,c只能是新增节点(如果c不是新增节点的话,它只能是之前变色变过来的,那它之前就是黑色,黑色节点的数量就不对)。右旋,把父亲节点变黑,g变红
- u存在且为黑,c一定不是新增(如果c是新增,那么新增前,黑色的数量不对),c之前就是黑色的,现在变成了红色,因为进行了变色。右旋,父亲变为黑色,爷爷变为红色
- 不用继续往上更新,因为黑黑可以,红黑也可以,就不用管了。
变色+双旋(叔叔不存在或叔叔存在且为黑)
p,c是红,g是黑,u不存在或者u存在且为黑
- u不存在,c只能是新增节点(如果c不是新增节点的话,它只能是之前变色变过来的,那它之前就是黑色,黑色节点的数量就不对)。
- u存在且为黑,c一定不是新增(如果c是新增,那么新增前,黑色的数量不对),c之前就是黑色的,现在变成了红色,因为进行了变色。
- 左单旋,然后右单旋,父亲节点不变色,cur节点由红色变成黑色,grandfather节点由黑色变成红色。不用继续往上更新,因为黑黑可以,红黑也可以,就不用管了。
关键看叔叔
判断是不是红黑树
用4个规则进行判断,满足这四个规则就满足最长路径不超过最短路径的两倍。
- 规则1枚举了颜色就实现了节点不是黑色就是红色
- 规则2直接检查根的颜色是不是黑色就可以了
- 规则3不能是连续的红色节点,遇到红色节点就检查孩子不太方便,如果孩子不存在就更不方便了,并且孩子可能有两个。但是检查父亲节点的颜色就方便多了,遇到红色节点就检查父亲节点的颜色。
- 规则4是每条路径的黑色节点的数量必须相同。用前序遍历检查,用形参blacknum记录到当前节点的黑色节点的数量,遇到黑色节点就++,走到空就计算完一条路径的黑色节点的数量。用任意一条的黑色节点的数量作为参考值,依次比较。
// 判断红黑树是否平衡
bool IsBalance()
{// 根节点是空if (_root == nullptr)return true;// 根节点非空且是红色if (_root->_col == RED)return false;// 算出一条路径上黑色节点的个数作为参考值Node* cur = _root;// 参考值int blacknum = 0;while (cur){if (cur->_col == BLACK){++blacknum;}// 就走最左边的一条路径cur = cur->_left;}return Check(_root,0,blacknum);
}private:
bool Check(Node* root, int blacknum, const int refnum)
{// refnum参考值if (root == nullptr){// 当前路径走完了if (blacknum != refnum){cout << "存在黑色节点的数量不相等的路径" << endl;return false;}return true;}// 规则3if (root->_col == RED && root->_parent->_col == RED){cout << "存在连续两个红节点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refnum) &&Check(root->_right, blacknum, refnum);
}
代码
#pragma once
#include<iostream>
using namespace std;// 枚举红黑树的颜色
enum Colour
{RED,BLACK
};// 按Key/Value的模式实现
template<class K,class V>
struct RBTreeNode
{pair<K, V> _kv;RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;Colour _col;RBTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr){}
};template<class K,class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{// 不冗余,插入失败return false;}}cur = new Node(kv);// 如果是非空树,插入红色节点cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else if (parent->_kv.first > kv.first){parent->_left = cur;}// 链接父亲节点cur->_parent = parent;// parent是红色,出现了连续的红色节点,需要向上调整// 调整之后cur是根,cur的parent是nullptrwhile (parent&&parent->_col == RED){Node* grandfather = parent->_parent;if (grandfather->_left == parent){// g// p uNode* uncle = grandfather->_right;if (uncle && uncle->_col == RED){// 变色是为了处理连续的红节点,保证黑节点的数量不变,// 向上继续调整是因为grandfather的节点可能是黑节点就结束,// 可能是红节点就继续向上处理parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else{// uncle不存在或uncle存在且为黑// g// p u// c// 右单旋if (cur == parent->_left){RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// 双旋// g// p u// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{// g// u pNode* uncle = grandfather->_left;if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上更新cur = grandfather;parent = cur->_parent;}else{// uncle不存在或者存在且是黑// g// u p// c// 左单旋if (parent->_right == cur){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// u p// c// 双旋RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}// 无论如何结束之后根都是黑色的_root->_col = BLACK;return true;}// 右单旋,旋转点是parentvoid RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;// b可能为空树if (subLR != nullptr)subLR->_parent = parent;// 记录parent的parentNode* pParent = parent->_parent;subL->_right = parent;parent->_parent = subL;// 1. 10是这棵树的总根if (parent == _root){_root = subL;subL->_parent = nullptr;}else{// 2. 10是这棵树的局部根// pParent左可能是parent,右也可能是parentif (pParent->_left == parent){pParent->_left = subL;}else{pParent->_right = subL;}subL->_parent = pParent;}}// 左单旋,旋转点是parentvoid RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;// b不是空树if (subRL)subRL->_parent = parent;// 记录父亲节点的父亲节点Node* pParent = parent->_parent;subR->_left = parent;parent->_parent = subR;// 1. 10是这棵树的总根if (_root == parent){_root = subR;subR->_parent = nullptr;}else{// 2. 10是这棵树的局部根if (pParent->_left == parent){pParent->_left = subR;}else{pParent->_right = subR;}subR->_parent = pParent;}}void InOrder(){_InOrder(_root);cout << endl;}int Height(){return _Height(_root);}int Size(){return _Size(_root);}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}bool IsBalance(){// 根节点是空if (_root == nullptr)return true;// 根节点非空且是红色if (_root->_col == RED)return false;// 算出一条路径上黑色节点的个数作为参考值Node* cur = _root;// 参考值int blacknum = 0;while (cur){if (cur->_col == BLACK){++blacknum;}// 就走最左边的一条路径cur = cur->_left;}return Check(_root,0,blacknum);}private:bool Check(Node* root, int blacknum, const int refnum){// refnum参考值if (root == nullptr){// 当前路径走完了if (blacknum != refnum){cout << "存在黑色节点的数量不相等的路径" << endl;return false;}return true;}// 规则3if (root->_col == RED && root->_parent->_col == RED){cout << "存在连续两个红节点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refnum) &&Check(root->_right, blacknum, refnum);}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}int _Size(Node* root){if (root == nullptr)return 0;return _Size(root->_left) + _Size(root->_right) + 1;}private:Node* _root = nullptr;
};#define _CRT_SECURE_NO_WARNINGS#include"RBTree.h"void TestRBTree1()
{RBTree<int, int> t;// 常规的测试用例//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };// 特殊的带有双旋场景的测试用例int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){t.Insert({ e,e });}t.InOrder();cout << t.IsBalance() << endl;
}int main()
{TestRBTree1();return 0;
}
相关文章:

C++红黑树详解
文章目录 红黑树概念规则为什么最长路径不超过最短路径的二倍?红黑树的时间复杂度红黑树的结构插入叔叔节点情况的讨论只变色(叔叔存在且为红)抽象的情况变色单旋(叔叔不存在或叔叔存在且为黑)变色双旋(叔叔不存在或叔叔存在且为黑…...
与机器学习相关的概率论重要概念的介绍和说明
概率论一些重要概念的介绍和说明 1、 试验 (1)试验是指在特定条件下,对某种方法、技术、设备或产品(即,事物)进行测试或验证的过程。 (2)易混淆的概念是,实验。实验&…...
60.await与sleep的原理分析 C#例子 WPF例子
在异步任务中使用Thread.Sleep会阻塞当前线程,因其是同步操作,暂停线程执行而不释放资源。这与异步编程旨在避免线程阻塞的目的相冲突。尽管异步方法可能包含其他await调用,Thread.Sleep仍会立即阻塞线程,妨碍其处理其他任务或响应…...
数据库连接池是如何工作的?
连接池是一种用于管理和复用连接(如数据库连接或网络连接)的技术,广泛应用于数据库操作和网络请求中,以提高应用程序的性能和资源利用率。以下是连接池的工作原理和机制的详细解释: 连接池的工作原理 1. 初始化阶段 在应用程序启动时,连接池会根据配置参数预先创建一定…...

2025年01月26日Github流行趋势
项目名称:onlook 项目地址url:https://github.com/onlook-dev/onlook项目语言:TypeScript历史star数:4871今日star数:207项目维护者:Kitenite, drfarrell, iNerdStack, abhiroopc84, apps/dependabot项目简…...

C语言的灵魂——指针(1)
指针是C语言的灵魂,有了指针C语言才能完成一些复杂的程序;没了指针就相当于C语言最精髓的部分被去掉了,可见指针是多么重要。废话不多讲我们直接开始。 指针 一,内存和地址二,编址三,指针变量和地址1&#…...
vue2和vue3指令
Vue 2 和 Vue 3 的指令系统非常相似,但 Vue 3 在指令方面进行了优化和扩展。以下是 Vue 2 和 Vue 3 中指令的对比: 1. 通用指令 这些指令在 Vue 2 和 Vue 3 中都可以使用,功能一致: 指令说明v-bind绑定 HTML 属性或组件 propsv-…...

【超详细】ELK实现日志采集(日志文件、springboot服务项目)进行实时日志采集上报
本文章介绍,Logstash进行自动采集服务器日志文件,并手把手教你如何在springboot项目中配置logstash进行日志自动上报与日志自定义格式输出给logstash。kibana如何进行配置索引模式,可以在kibana中看到采集到的日志 日志流程 logfile-> l…...

微信阅读网站小程序的设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
通过配置核查,CentOS操作系统当前无多余的、过期的账户;但CentOS操作系统存在共享账户r***t
通过配置核查,CentOS操作系统当前无多余的、过期的账户;但CentOS操作系统存在共享 核查CentOS操作系统中的用户账户,可以使用以下命令: 查看当前活跃用户: awk -F: /\$1\$/{print $1} /etc/shadow 查看多余账户(非活跃账户&…...
Vue 3 30天精进之旅:Day 05 - 事件处理
引言 在前几天的学习中,我们探讨了Vue实例、计算属性和侦听器。这些概念为我们搭建了Vue应用的基础。今天,我们将专注于事件处理,这是交互式Web应用的核心部分。通过学习如何在Vue中处理事件,你将能够更好地与用户进行交互&#…...
.NET Core跨域
CORS 跨域通讯的问题。解决方案:JSONP、前端代理后端请求、CORS等。CORS原理:在服务器的响应报文头中通过access-control-allow-origin告诉浏览器允许跨域访问的域名。在Program.cs的“var appbuilder.Build()”这句代码之前注册 string[] urls new[] …...
笔试-二维数组2
应用 现有M(1<M<10)个端口组,每个端口组是长度为N(1<N<100),元素均为整数。如果这些端口组间存在2个及以上的元素相同,则认为端口组可以关联合并;若可以关联合并,请用二位数组表示输出结果。其中…...
vue中使用jquery 实现table 拖动改变尺寸
使用 CDN , 降低打包文件的大小在index.html中 <script src"https://.../cdns/jquery-1.12.4.min.js"></script>在 Vue 中使用 jQuery 一旦你引入 jQuery,你可以在 Vue 实例中使用它。有两种主要方式: 1. 使用全局变量 $ jQue…...

使用ensp进行ppp协议综合实验
实验拓扑 实验划分 AR1的Serial3/0/0接口:192.168.1.1/24; AR2的Serial3/0/0接口:192.168.1.2/24; AR2的Serial3/0/1和4/0/0的聚合接口:192.168.2.2/24; AR3的Serial3/0/0和3/0/1的聚合接口:192…...
什么是AGI
AGI(Artificial General Intelligence,人工通用智能)是指具备与人类相当或超越人类水平的通用智能的人工智能系统。与当前主流的**狭义人工智能(Narrow AI)**不同,AGI 能够像人类一样灵活地处理各种任务&am…...

RabbitMQ模块新增消息转换器
文章目录 1.目录结构2.代码1.pom.xml 排除logging2.RabbitMQConfig.java3.RabbitMQAutoConfiguration.java 1.目录结构 2.代码 1.pom.xml 排除logging <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/PO…...
验证二叉搜索树(力扣98)
根据二叉搜索树的特性,我们使用中序遍历,保证节点按从小到大的顺序遍历。既然要验证,就是看在中序遍历的条件下,各个节点的大小关系是否符合二叉搜索树的特性。双指针法和适合解决这个问题,一个指针指向当前节点&#…...
vue3 vue2区别
Vue 3 和 Vue 2 之间存在多个方面的区别,以下是一些主要的差异点: 1. 性能改进 Vue 3:在性能上有显著提升,包括更小的包体积、更快的渲染速度和更好的内存管理。Vue 2:性能相对较低,尤其是在大型应用中。…...
IOS 自定义代理协议Delegate
QuestionViewCell.h文件代码,定义代理协议 protocol QuestionViewCellDelegate <NSObject>- (void)cellIsOpenDidChangeAtIndexPath:(NSIndexPath *)indexPath;endinterface QuestionViewCell : UITableViewCellproperty (nonatomic, weak) id<QuestionVi…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

Ubuntu Cursor升级成v1.0
0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...