当前位置: 首页 > news >正文

什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别

自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。

1. 什么是词嵌入(Word Embedding)?

定义

词嵌入是一种将单词表示为低维向量的方法,这种向量能够捕捉单词的语义和语法特性。通过词嵌入,单词之间的语义相似性可以用向量之间的距离来衡量。

为什么需要词嵌入?

  1. 传统方法的局限性

    • 词袋模型(Bag of Words, BoW)

      • 忽略单词顺序。

      • 向量维度高,稀疏性严重。

    • TF-IDF

      • 无法捕捉单词之间的语义关系。

  2. 词嵌入的优势

    • 通过训练,单词之间的语义关系被映射到向量空间。

    • 单词的语义相似性可以通过向量的距离衡量。

    • 能更高效地表示文本内容,适合用于深度学习模型。

一个通俗的例子

词嵌入让计算机理解:

  • "国王 - 男人 + 女人 = 女王"

  • "巴黎 - 法国 + 意大利 = 罗马"

这表示词嵌入不仅能捕捉单词之间的表面相似性,还能理解它们在语义上的逻辑关系。

2. 经典词嵌入模型

(1)Word2Vec

相关文章:

什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别

自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。 1. 什么是词嵌入(Word Em…...

WPS数据分析000010

基于数据透视表的内容 一、排序 手动调动 二、筛选 三、值显示方式 四、值汇总依据 五、布局和选项 不显示分类汇总 合并居中带标签的单元格 空单元格显示 六、显示报表筛选页...

Qt中QVariant的使用

1.使用QVariant实现不同类型数据的相加 方法:通过type函数返回数值的类型,然后通过setValue来构造一个QVariant类型的返回值。 函数: QVariant mainPage::dataPlus(QVariant a, QVariant b) {QVariant ret;if ((a.type() QVariant::Int) &a…...

Avalonia UI MVVM DataTemplate里绑定Command

Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...

动态规划DP 数字三角型模型 最低通行费用(题目详解+C++代码完整实现)

最低通行费用 原题链接 AcWing 1018. 最低同行费用 题目描述 一个商人穿过一个 NN的正方形的网格&#xff0c;去参加一个非常重要的商务活动。 他要从网格的左上角进&#xff0c;右下角出。每穿越中间 1个小方格&#xff0c;都要花费 1个单位时间。商人必须在 (2N−1)个单位…...

deepseek R1的确不错,特别是深度思考模式

deepseek R1的确不错&#xff0c;特别是深度思考模式&#xff0c;每次都能自我反省改进。比如我让 它写文案&#xff1a; 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们&#xff1a; 当CtrlS的肌肉记忆遇上抢票插件&#xff0c;当Spring Boot的…...

Linux 常用命令 - sort 【对文件内容进行排序】

简介 sort 命令源于英文单词 “sort”&#xff0c;表示排序。其主要功能是对文本文件中的行进行排序。它可以根据字母、数字、特定字段等不同的标准进行排序。sort 通过逐行读取文件&#xff08;没有指定文件或指定文件为 - 时读取标准输入&#xff09;内容&#xff0c;并按照…...

MyBatis最佳实践:提升数据库交互效率的秘密武器

第一章&#xff1a;框架的概述&#xff1a; MyBatis 框架的概述&#xff1a; MyBatis 是一个优秀的基于 Java 的持久框架&#xff0c;内部对 JDBC 做了封装&#xff0c;使开发者只需要关注 SQL 语句&#xff0c;而不关注 JDBC 的代码&#xff0c;使开发变得更加的简单MyBatis 通…...

选择困难?直接生成pynput快捷键字符串

from pynput import keyboard# 文档&#xff1a;https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard # 博客(pynput相关源码)&#xff1a;https://blog.csdn.net/qq_39124701/article/details/145230331 # 虚拟键码(十六进制)&#xff1a;https:/…...

DeepSeek-R1:强化学习驱动的推理模型

1月20日晚&#xff0c;DeepSeek正式发布了全新的推理模型DeepSeek-R1&#xff0c;引起了人工智能领域的广泛关注。该模型在数学、代码生成等高复杂度任务上表现出色&#xff0c;性能对标OpenAI的o1正式版。同时&#xff0c;DeepSeek宣布将DeepSeek-R1以及相关技术报告全面开源。…...

国内优秀的FPGA设计公司主要分布在哪些城市?

近年来&#xff0c;国内FPGA行业发展迅速&#xff0c;随着5G通信、人工智能、大数据等新兴技术的崛起&#xff0c;FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此&#xff0c;国内优秀的FPGA设计公司主要分布在哪些城市&a…...

3.日常英语笔记

screening discrepancies 筛选差异 The team found some screening discrepancies in the data. 团队在数据筛选中发现了些差异。 Don’t tug at it ,or it will fall over and crush you. tug 拉&#xff0c;拽&#xff0c;拖 He tugged the door open with all his might…...

基于RIP的MGRE实验

实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议&#xff0c;搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…...

【开源免费】基于Vue和SpringBoot的美食推荐商城(附论文)

本文项目编号 T 166 &#xff0c;文末自助获取源码 \color{red}{T166&#xff0c;文末自助获取源码} T166&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

Pandas DataFrame 拼接、合并和关联

拼接:使用 pd.concat(),可以沿着行或列方向拼接 DataFrame。 合并:使用 pd.merge(),可以根据一个或多个键进行不同类型的合并(左连接、右连接、全连接、内连接)。 关联:使用 join() 方法,通常在设置了索引的 DataFrame 上进行关联操作。 concat拼接 按列拼接 df1 = …...

【Redis】Redis修改连接数参数

1.重启操作背景 Redis数据库连接数上限&#xff0c;需要修改配置文件里maxclients参数&#xff0c;修改后需重启数据库 1.1、修改操作系统open files参数 1.2、修改redis连接数 2.登录操作系统 登录堡垒机 ssh {ip}3.查看当前状态 3.1、查看操作系统配置 ulimit -a3.2、…...

scratch变魔术 2024年12月scratch三级真题 中国电子学会 图形化编程 scratch三级真题和答案解析

目录 scratch变魔术 一、题目要求 1、准备工作 2、功能实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、 推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、py…...

51单片机开发:点阵屏显示数字

实验目标&#xff1a;在8x8的点阵屏上显示数字0。 点阵屏的原理图如下图所示&#xff0c;点阵屏的列接在P0端口&#xff0c;行接在74HC595扩展的DP端口上。 扩展口的使用详见&#xff1a;51单片机开发&#xff1a;IO扩展(串转并)实验-CSDN博客 要让点阵屏显示数字&#xff0…...

mysql DDL可重入讨论

mysql的bug&#xff1a;当执行 MySQL online DDL 时&#xff0c;期间如有其他并发的 DML 对相同的表进行增量修改&#xff0c;比如 update、insert、insert into … on duplicate key、replace into 等&#xff0c;且增量修改的数据违背唯一约束&#xff0c;那么 DDL 最后都会执…...

DAY01 面向对象回顾、继承、抽象类

学习目标 能够写出类的继承格式public class 子类 extends 父类{}public class Cat extends Animal{} 能够说出继承的特点子类继承父类,就会自动拥有父类非私有的成员 能够说出子类调用父类的成员特点1.子类有使用子类自己的2.子类没有使用,继承自父类的3.子类父类都没有编译报…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...