【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
一、使用pytorch框架实现逻辑回归
1. 数据部分:
- 首先自定义了一个简单的数据集,特征
X是 100 个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。 - 将
numpy数组转换为 PyTorch 张量,方便后续在模型中使用。
2. 模型定义部分:
方案 1:使用 nn.Sequential 直接按顺序定义了一个线性层,简洁直观。
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 转换为 PyTorch 张量
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义线性回归模型
model = nn.Sequential(nn.Linear(1, 1)
)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_tensor)loss = criterion(outputs, y_tensor)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 模型评估
with torch.no_grad():y_pred = model(X_tensor).numpy()mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
print("模型系数:", model[0].weight.item())
print("模型截距:", model[0].bias.item())
方案 2:使用 nn.ModuleList 存储线性层,在 forward 方法中依次调用层进行前向传播,适合动态构建层序列。
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 转换为 PyTorch 张量
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义线性回归模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.layers = nn.ModuleList([nn.Linear(1, 1)])def forward(self, x):for layer in self.layers:x = layer(x)return xmodel = LinearRegression()# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_tensor)loss = criterion(outputs, y_tensor)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 模型评估
with torch.no_grad():y_pred = model(X_tensor).numpy()mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
print("模型系数:", model.layers[0].weight.item())
print("模型截距:", model.layers[0].bias.item())
方案 3:使用 nn.ModuleDict 以字典形式存储层,通过键名调用层,适合需要对层进行命名和灵活访问的场景。
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 转换为 PyTorch 张量
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义线性回归模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.layers = nn.ModuleDict({'linear': nn.Linear(1, 1)})def forward(self, x):x = self.layers['linear'](x)return xmodel = LinearRegression()# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_tensor)loss = criterion(outputs, y_tensor)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 模型评估
with torch.no_grad():y_pred = model(X_tensor).numpy()mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
print("模型系数:", model.layers['linear'].weight.item())
print("模型截距:", model.layers['linear'].bias.item())
方案 4:直接继承 nn.Module,在 __init__ 方法中定义线性层,在 forward 方法中实现前向传播逻辑,是最常见和基础的定义模型方式。
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score# 自定义数据集
X = np.random.rand(100, 1).astype(np.float32)
y = 2 * X + 1 + 0.3 * np.random.randn(100, 1).astype(np.float32)# 转换为 PyTorch 张量
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义线性回归模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1)def forward(self, x):return self.linear(x)model = LinearRegression()# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_tensor)loss = criterion(outputs, y_tensor)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 模型评估
with torch.no_grad():y_pred = model(X_tensor).numpy()mse = mean_squared_error(y, y_pred)
r2 = r2_score(y, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"决定系数 (R²): {r2}")# 输出模型的系数和截距
print("模型系数:", model.linear.weight.item())
print("模型截距:", model.linear.bias.item())
3. 训练和评估部分:
- 定义了均方误差损失函数
nn.MSELoss和随机梯度下降优化器torch.optim.SGD。 - 通过多个 epoch 进行训练,每个 epoch 包含前向传播、损失计算、反向传播和参数更新。
- 训练结束后,在无梯度计算模式下进行预测,并使用
scikit-learn的指标计算均方误差和决定系数评估模型性能,最后输出模型的系数和截距。
二、保存pytorch框架逻辑回归模型
在 PyTorch 中,有两种常见的保存模型的方式:保存模型的权重和其他参数,以及保存整个模型。下面将结合一个简单的逻辑回归模型示例,详细介绍这两种保存方式及对应的加载方法。
方式 1:保存模型的权重和其他参数
这种方式只保存模型的状态字典(state_dict),它包含了模型的所有可学习参数(如权重和偏置)。这种方法的优点是文件体积小,便于共享和迁移,缺点是加载时需要先定义模型结构。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 自定义数据集
X = np.random.randn(100, 2).astype(np.float32)
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, input_size):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.linear(x)out = self.sigmoid(out)return out# 初始化模型
input_size = 2
model = LogisticRegression(input_size)# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):outputs = model(X_tensor)loss = criterion(outputs, y_tensor)optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 保存模型的权重和其他参数
torch.save(model.state_dict(), 'model_weights.pth')# 加载模型的权重和其他参数
loaded_model = LogisticRegression(input_size)
loaded_model.load_state_dict(torch.load('model_weights.pth'))
loaded_model.eval()# 生成新数据进行预测
new_X = np.random.randn(10, 2).astype(np.float32)
new_X_tensor = torch.from_numpy(new_X)with torch.no_grad():predictions = loaded_model(new_X_tensor)predicted_labels = (predictions >= 0.5).float()print("预测概率:")
print(predictions.numpy())
print("预测标签:")
print(predicted_labels.numpy())
代码解释
- 模型训练:首先定义并训练一个逻辑回归模型。
- 保存模型:使用
torch.save(model.state_dict(), 'model_weights.pth')保存模型的状态字典到文件model_weights.pth。 - 加载模型:先创建一个新的模型实例
loaded_model,然后使用loaded_model.load_state_dict(torch.load('model_weights.pth'))加载保存的状态字典。 - 预测:将模型设置为评估模式,生成新数据进行预测。
方式 2:保存整个模型
这种方式会保存整个模型对象,包括模型的结构和状态字典。优点是加载时不需要重新定义模型结构,缺点是文件体积较大,并且可能会受到 Python 版本和库版本的限制。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 自定义数据集
X = np.random.randn(100, 2).astype(np.float32)
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, input_size):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.linear(x)out = self.sigmoid(out)return out# 初始化模型
input_size = 2
model = LogisticRegression(input_size)# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):outputs = model(X_tensor)loss = criterion(outputs, y_tensor)optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 保存整个模型
torch.save(model, 'whole_model.pth')# 加载整个模型
loaded_model = torch.load('whole_model.pth')
loaded_model.eval()# 生成新数据进行预测
new_X = np.random.randn(10, 2).astype(np.float32)
new_X_tensor = torch.from_numpy(new_X)with torch.no_grad():predictions = loaded_model(new_X_tensor)predicted_labels = (predictions >= 0.5).float()print("预测概率:")
print(predictions.numpy())
print("预测标签:")
print(predicted_labels.numpy())
代码解释
- 模型训练:同样先定义并训练逻辑回归模型。
- 保存模型:使用
torch.save(model, 'whole_model.pth')保存整个模型对象到文件whole_model.pth。 - 加载模型:使用
torch.load('whole_model.pth')直接加载整个模型。 - 预测:将模型设置为评估模式,生成新数据进行预测。
通过以上两种方式,可以根据实际需求选择合适的模型保存和加载方法。
三、加载pytorch框架逻辑回归模型
以下将分别详细介绍在 PyTorch 中针对只保存模型参数和保存结构与参数这两种不同保存方式对应的模型加载方法,同时给出完整的代码示例。
方式 1:只保存模型参数的加载方式
当用户只保存了模型的参数(即 state_dict)时,在加载模型时需要先定义好与原模型相同结构的模型,再将保存的参数加载到该模型中。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 自定义数据集
X = np.random.randn(100, 2).astype(np.float32)
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, input_size):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.linear(x)out = self.sigmoid(out)return out# 初始化模型
input_size = 2
model = LogisticRegression(input_size)# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):outputs = model(X_tensor)loss = criterion(outputs, y_tensor)optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 保存模型的参数
torch.save(model.state_dict(), 'model_params.pth')# 加载模型的参数
# 重新定义模型结构
loaded_model = LogisticRegression(input_size)
# 加载保存的参数
loaded_model.load_state_dict(torch.load('model_params.pth'))
# 将模型设置为评估模式
loaded_model.eval()# 生成新数据进行预测
new_X = np.random.randn(10, 2).astype(np.float32)
new_X_tensor = torch.from_numpy(new_X)# 进行预测
with torch.no_grad():predictions = loaded_model(new_X_tensor)predicted_labels = (predictions >= 0.5).float()print("预测概率:")
print(predictions.numpy())
print("预测标签:")
print(predicted_labels.numpy())
代码解释
- 模型定义与训练:定义了一个简单的逻辑回归模型,并使用自定义数据集进行训练。
- 保存参数:使用
torch.save(model.state_dict(), 'model_params.pth')保存模型的参数。 - 加载参数:
- 重新定义与原模型相同结构的
loaded_model。 - 使用
loaded_model.load_state_dict(torch.load('model_params.pth'))加载保存的参数。
- 重新定义与原模型相同结构的
- 预测:将模型设置为评估模式,生成新数据进行预测。
方式 2:保存结构和参数的模型加载方式
当保存了模型的结构和参数时,加载模型就相对简单,直接使用 torch.load 函数即可加载整个模型。
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 自定义数据集
X = np.random.randn(100, 2).astype(np.float32)
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, input_size):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.linear(x)out = self.sigmoid(out)return out# 初始化模型
input_size = 2
model = LogisticRegression(input_size)# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):outputs = model(X_tensor)loss = criterion(outputs, y_tensor)optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 保存整个模型(结构和参数)
torch.save(model, 'whole_model.pth')# 加载整个模型
loaded_model = torch.load('whole_model.pth')
# 将模型设置为评估模式
loaded_model.eval()# 生成新数据进行预测
new_X = np.random.randn(10, 2).astype(np.float32)
new_X_tensor = torch.from_numpy(new_X)# 进行预测
with torch.no_grad():predictions = loaded_model(new_X_tensor)predicted_labels = (predictions >= 0.5).float()print("预测概率:")
print(predictions.numpy())
print("预测标签:")
print(predicted_labels.numpy())
代码解释
- 模型定义与训练:同样定义并训练逻辑回归模型。
- 保存整个模型:使用
torch.save(model, 'whole_model.pth')保存模型的结构和参数。 - 加载整个模型:使用
torch.load('whole_model.pth')直接加载整个模型。 - 预测:将模型设置为评估模式,生成新数据进行预测。
通过以上两种方式,可以根据不同的保存情况正确加载 PyTorch 模型。
四、完整流程(使用直接继承 nn.Module逻辑回归,且仅保存模型的权重和其他参数)
1. 实现思路
① 自定义数据集:
生成符合特定分布的特征矩阵和对应的标签向量。
② 构建逻辑回归模型:
定义一个简单的逻辑回归模型,这里使用直接继承 nn.Module逻辑回归。
③ 训练模型:
使用生成的数据集对模型进行训练。
④ 保存模型:
将训练好的模型保存到本地文件,这里仅保存模型的权重和其他参数。
⑤ 加载模型:
从本地文件中加载保存的模型。
⑥ 模型预测:
使用加载的模型对新数据进行预测。
2. 代码示例
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 自定义数据集
# 生成 100 个样本,每个样本有 2 个特征
X = np.random.randn(100, 2).astype(np.float32)
# 根据特征生成标签,使用简单的线性组合和阈值判断
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1)# 将 numpy 数组转换为 PyTorch 张量
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)# 定义逻辑回归模型
class LogisticRegression(nn.Module):def __init__(self, input_size):super(LogisticRegression, self).__init__()self.linear = nn.Linear(input_size, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):out = self.linear(x)out = self.sigmoid(out)return out# 初始化模型
input_size = 2
model = LogisticRegression(input_size)# 定义损失函数和优化器
criterion = nn.BCELoss() # 二元交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):# 前向传播outputs = model(X_tensor)loss = criterion(outputs, y_tensor)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')# 加载模型
loaded_model = LogisticRegression(input_size)
loaded_model.load_state_dict(torch.load('logistic_regression_model.pth'))
loaded_model.eval()# 生成新数据进行预测
new_X = np.random.randn(10, 2).astype(np.float32)
new_X_tensor = torch.from_numpy(new_X)# 使用加载的模型进行预测
with torch.no_grad():predictions = loaded_model(new_X_tensor)predicted_labels = (predictions >= 0.5).float()print("预测概率:")
print(predictions.numpy())
print("预测标签:")
print(predicted_labels.numpy())
3. 代码解释
① 数据集生成:
X = np.random.randn(100, 2).astype(np.float32):生成 100 个样本,每个样本有 2 个特征。y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.float32).reshape(-1, 1):根据特征的线性组合生成标签,大于 0 标记为 1,否则标记为 0。X_tensor = torch.from_numpy(X)和y_tensor = torch.from_numpy(y):将numpy数组转换为 PyTorch 张量。
② 模型定义:
LogisticRegression类继承自nn.Module,包含一个线性层nn.Linear和一个 Sigmoid 激活函数nn.Sigmoid。forward方法定义了前向传播的逻辑。
③ 损失函数和优化器:
criterion = nn.BCELoss():使用二元交叉熵损失函数,适用于二分类问题。optimizer = optim.SGD(model.parameters(), lr=0.01):使用随机梯度下降优化器,学习率为 0.01。
④ 模型训练:
- 通过多次迭代进行前向传播、损失计算、反向传播和参数更新。
- 每 100 个 epoch 打印一次损失值。
⑤模型保存:
torch.save(model.state_dict(), 'logistic_regression_model.pth'):保存模型的参数到本地文件logistic_regression_model.pth。
⑥ 模型加载和预测:
loaded_model = LogisticRegression(input_size):创建一个新的模型实例。loaded_model.load_state_dict(torch.load('logistic_regression_model.pth')):加载保存的模型参数。loaded_model.eval():将模型设置为评估模式。- 生成新数据
new_X并转换为张量new_X_tensor。 - 使用
loaded_model进行预测,通过(predictions >= 0.5).float()将预测概率转换为标签。
相关文章:
【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…...
C语言连接Mysql
目录 C语言连接Mysql下载 mysql 开发库 方法介绍mysql_init()mysql_real_connect()mysql_query()mysql_store_result()mysql_num_fields()mysql_fetch_fields()mysql_fetch_row()mysql_free_result()mysql_close() 完整代码 C语言连接Mysql 下载 mysql 开发库 方法一…...
Windows上通过Git Bash激活Anaconda
在Windows上配置完Anaconda后,普遍通过Anaconda Prompt激活虚拟环境并执行Python,如下图所示: 有时需要连续执行多个python脚本时,直接在Anaconda Prompt下可以通过在以下方式,即命令间通过&&连接,…...
面试经典150题——图
文章目录 1、岛屿数量1.1 题目链接1.2 题目描述1.3 解题代码1.4 解题思路 2、被围绕的区域2.1 题目链接2.2 题目描述2.3 解题代码2.4 解题思路 3、克隆图3.1 题目链接3.2 题目描述3.3 解题代码3.4 解题思路 4、除法求值4.1 题目链接4.2 题目描述4.3 解题代码4.4 解题思路 5、课…...
学习数据结构(1)时间复杂度
1.数据结构和算法 (1)数据结构是计算机存储、组织数据的方式,指相互之间存在⼀种或多种特定关系的数据元素的集合 (2)算法就是定义良好的计算过程,取一个或一组的值为输入,并产生出一个或一组…...
项目集成GateWay
文章目录 1.环境搭建1.创建sunrays-common-cloud-gateway-starter模块2.目录结构3.自动配置1.GateWayAutoConfiguration.java2.spring.factories 3.pom.xml4.注意:GateWay不能跟Web一起引入! 1.环境搭建 1.创建sunrays-common-cloud-gateway-starter模块…...
【Ubuntu】使用远程桌面协议(RDP)在Windows上远程连接Ubuntu
使用远程桌面协议(RDP)在Windows上远程连接Ubuntu 远程桌面协议(RDP)是一种允许用户通过图形界面远程控制计算机的协议。本文将详细介绍如何在Ubuntu上安装和配置xrdp,并通过Windows的远程桌面连接工具访问Ubuntu。 …...
python3+TensorFlow 2.x 基础学习(一)
目录 TensorFlow 2.x基础 1、安装 TensorFlow 2.x 2、TensorFlow 2.x 基础概念 2、1 Eager Execution 2、2 TensorFlow 张量(Tensor) 3、使用Keras构建神经网络模型 3、1 构建 Sequential 模型 3、2 编译模型 1、Optimizer(优化器&a…...
《活出人生的厚度》
《活出人生的厚度》可以从不同角度来理解和实践,以下为你提供一些拓展内容: ### 不断学习与自我提升 - **持续知识更新**:保持对新知识的渴望,利用各种渠道学习,如在线课程、学术讲座、行业研讨会等。例如,…...
安装 docker 详解
在平常的开发工作中,我们经常需要部署项目。随着 Docker 容器的出现,大大提高了部署效率。Docker 容器包含了应用程序运行所需的所有依赖,避免了换环境运行问题。可以在短时间内创建、启动和停止容器,大大提高了应用的部署速度&am…...
【Rust自学】16.3. 共享状态的并发
喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 16.3.1. 使用共享来实现并发 还记得Go语言有一句名言是这么说的:Do not commun…...
开发者交流平台项目部署到阿里云服务器教程
本文使用PuTTY软件在本地Windows系统远程控制Linux服务器;其中,Windows系统为Windows 10专业版,Linux系统为CentOS 7.6 64位。 1.工具软件的准备 maven:https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-m…...
【2024年华为OD机试】 (B卷,100分)- 乘坐保密电梯(JavaScriptJava PythonC/C++)
一、问题描述 问题描述 我们需要从0楼到达指定楼层m,乘坐电梯的规则如下: 给定一个数字序列,每次根据序列中的数字n,上升n层或下降n层。前后两次的方向必须相反,且首次方向向上。必须使用序列中的所有数字,不能只使用一部分。目标是到达指定楼层m,如果无法到达,则给出…...
maven的打包插件如何使用
默认的情况下,当直接执行maven项目的编译命令时,对于结果来说是不打第三方包的,只有一个单独的代码jar,想要打一个包含其他资源的完整包就需要用到maven编译插件,使用时分以下几种情况 第一种:当只是想单纯…...
solidity高阶 -- 线性继承
Solidity是一种面向合约的高级编程语言,用于编写智能合约。在Solidity中,多线继承是一个强大的特性,允许合约从多个父合约继承属性和方法。本文将详细介绍Solidity中的多线继承,并通过不同的实例展示其使用方法和注意事项。 在Sol…...
国内外大语言模型领域发展现状与预期
在数字化浪潮中,大语言模型已成为人工智能领域的关键力量,深刻影响着各个行业的发展轨迹。下面我们将深入探讨国内外大语言模型领域的发展现状以及未来预期。 一、发展现状 (一)国外进展 美国的引领地位:OpenAI 的 …...
【Leetcode 热题 100】416. 分割等和子集
问题背景 给你一个 只包含正整数 的 非空 数组 n u m s nums nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 数据约束 1 ≤ n u m s . l e n g t h ≤ 200 1 \le nums.length \le 200 1≤nums.length≤200 1 ≤ n u m s [ i ] ≤ …...
C语言------数组从入门到精通
1.一维数组 目标:通过思维导图了解学习一维数组的核心知识点: 1.1定义 使用 类型名 数组名[数组长度]; 定义数组。 // 示例: int arr[5]; 1.2一维数组初始化 数组的初始化可以分为静态初始化和动态初始化两种方式。 它们的主要区别在于初始化的时机和内存分配的方…...
物管系统赋能智慧物业管理提升服务质量与工作效率的新风潮
内容概要 在当今的物业管理领域,物管系统的崛起为智慧物业管理带来了新的机遇和挑战。这些先进的系统能够有效整合各类信息,促进数字化管理,从而提升服务质量和工作效率。通过物管系统,物业管理者可以实时查看和分析各种数据&…...
2024年记 | 凛冬将至
放弃幻想,准备斗争! 考研or就业? 上大学以来,考研上名校在我的心里一直是一颗种子,2024年初,当时的想法是考研和就业两手抓。买了张宇的高数现代,想要死磕! 也记了挺多笔记... 如果…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...
【实施指南】Android客户端HTTPS双向认证实施指南
🔐 一、所需准备材料 证书文件(6类核心文件) 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...
