当前位置: 首页 > news >正文

深度学习的应用

目录

一、机器视觉

1.1 应用场景

1.2 常见的计算机视觉任务

1.2.1 图像分类

1.2.2 目标检测

1.2.3 图像分割

二、自然语言处理

三、推荐系统

3.1 常用的推荐系统算法实现方案

四、图像分类实验补充

4.1 CIFAR-100 数据集实验

实验代码

4.2 CIFAR-10

实验代码 


深度学习的应用领域广泛且多样,涵盖了计算机视觉、自然语言处理、推荐系统等多个领域。

一、机器视觉

1.1 应用场景

计算机视觉(Computer Vision)又称机器视觉(Machine Vision),是一门让机器学会如何去“看”的学科,是深度学习技术的一个重要应用领域,被广泛应用于安防、工业质检和自动驾驶等场景。具体来说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫做机器视觉,其目的是建立能够从图像或者视频中“感知”信息的人工系统。

计算机视觉技术经过几十年的发展,已经在交通(车牌识别、道路违章抓拍)、安防(人脸闸机、小区监控)、金融(刷脸支付、柜台的自动票据识别)、医疗(医疗影像诊断)、工业生产(产品缺陷自动检测)等多个领域应用,影响或正在改变人们的日常生活和工业生产方式。未来,随着技术的不断演进,必将涌现出更多的产品和应用,为我们的生活创造更大的便利和更广阔的机会。

1.2 常见的计算机视觉任务

1.2.1 图像分类

图像分类利用计算机对图像进行定量分析,把图像或图像中的像元或区域划分为若干个类别中的某一种。以下是一些常见的图像分类算法:

1.2.2 目标检测

对计算机而言,能够“看到”的是图像被编码之后的数字,但它很难理解高层语义概念,比如图像或者视频帧中出现的目标是人还是物体,更无法定位目标出现在图像中哪个区域。目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框,标示出每个目标的位置。目标检测应用场景覆盖广泛,如安全帽检测、火灾烟雾检测、人员摔倒检测、电瓶车进电梯检测等。

以下是一些常见的目标检测算法:

1.2.3 图像分割

图像分割指的是将数字图像细分为多个图像子区域的过程,即对图像中的每个像素加标签,这一过程使得具有相同标签的像素具有某种共同视觉特性。图像分割的目的是简化或改变图像的表示形式,使得图像更容易理解和分析。图像分割通常用于定位图像中的物体和边界(线、曲线等)。图像分割的领域非常多,如人像分割、车道线分割、无人车、地块检测、表计识别等。

以下是一些常见的图像分割算法:

  • U-Net

  • DeepLabv3+

  • PSPNet

  • GSCNN

  • HRNet

  • PP-LiteSeg

  • PP-HumanSeg

  • PP-Matting

二、自然语言处理

自然语言处理(Natural Language Processing,简称 NLP)是计算机科学和人工智能领域的一个重要方向。它主要研究人与计算机之间,使用自然语言进行有效通信的各种理论和方法。简单来说,计算机以用户的自然语言数据作为输入,在其内部通过定义的算法进行加工、计算等系列操作后(用以模拟人类对自然语言的理解),再返回用户所期望的结果。

随着计算机和互联网技术的发展,自然语言处理技术在各领域广泛应用,我们平时常用的搜索引擎、新闻推荐、智能音箱等产品,都是以自然语言处理技术为核心的互联网和人工智能产品。

三、推荐系统

互联网和信息计算的快速发展,衍生了海量的数据,我们已经进入了一个信息爆炸的时代,每时每刻都有海量信息产生,然而这些信息并不全是个人所关心的,用户从大量的信息中寻找对自己有用的信息也变得越来越困难。另一方面,信息的生产方也在绞尽脑汁地把用户感兴趣的信息送到用户面前,每个人的兴趣又不尽相同,所以可以实现千人千面的推荐系统应运而生。简单来说,推荐系统是根据用户的浏览习惯,确定用户的兴趣,通过发掘用户的行为,将合适的信息推荐给用户,满足用户的个性化需求,帮助用户找到对他胃口但不易找到的信息或商品。

推荐系统在互联网和传统行业中都有着大量的应用。在互联网行业,几乎所有互联网平台都应用了推荐系统,如资讯新闻、影视剧、知识社区的内容推荐、电商平台的商品推荐等;在传统行业中,有些用于企业的营销环节,如银行的金融产品推荐、保险公司的保险产品推荐等。

3.1 常用的推荐系统算法实现方案

  1. 协同过滤推荐(Collaborative Filtering Recommendation)

    • 基于用户的协同过滤:根据用户的历史喜好分析出相似兴趣的人,然后给用户推荐其他人喜欢的物品。例如,小李和小张对物品 A、B 都给了十分好评,那么可以认为小李和小张具有相似的兴趣爱好,如果小李给物品 C 十分好评,那么可以把 C 推荐给小张。

    • 基于物品的协同过滤:根据用户的历史喜好分析出相似物品,然后给用户推荐同类物品。例如,小李对物品 A、B、C 给了十分好评,小王对物品 A、C 给了十分好评,从这些用户的喜好中分析出喜欢 A 的人都喜欢 C,物品 A 和 C 是相似的,如果小张给了 A 好评,那么可以把 C 也推荐给小张。

  2. 基于内容过滤推荐(Content-based Filtering Recommendation)

    • 核心是衡量出两个物品的相似度。首先对物品或内容的特征作出描述,发现其相关性,然后基于用户以往的喜好记录,推荐给用户相似的物品。例如,小张对物品 A 感兴趣,而物品 A 和物品 C 是同类物品(从物品的内容描述上判断),可以把物品 C 也推荐给小张。

  3. 组合推荐(Hybrid Recommendation)

    • 实际应用中往往不只采用某一种推荐方法,而是通过一定的组合方法将多个算法混合在一起,以实现更好的推荐效果,比如加权混合、分层混合等。具体选择哪种方式和应用场景有很大关系。

四、图像分类实验补充

4.1 CIFAR-100 数据集实验

CIFAR-100 数据集有 100 个类别,每个类别有 600 张大小为 32×32 的彩色图像,其中 500 张作为训练集,100 张作为测试集。对于每一张图像,它有 fine_labelscoarse_labels 两个标签,分别代表图像的细粒度和粗粒度标签。对应下图中的 classes 和 superclass。 也就是说, CIFAR100 数据集是层次的。

实验代码

# python --version     3.8.10
# PyTorch --version   2.3.1
# torchvision --version 0.18.1
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR100# 定义超参数
num_epochs = 5
batch_size = 64
learning_rate = 0.001kernel_size = 5
image = 32# 数据增强
# transform_train = transforms.Compose([
#     transforms.RandomHorizontalFlip(),
#     transforms.RandomCrop(32, padding=4),
#     transforms.ToTensor(),
#     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# ])
#
# transform_test = transforms.Compose([
#     transforms.ToTensor(),
#     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# ])
# # 加载和预处理数据
# train_dataset = CIFAR100(root='./', train=True, transform=transform_train, download=False)
# test_dataset = CIFAR100(root='./', train=False, transform=transform_test, download=False)# 加载和预处理数据
train_dataset = CIFAR100(root='./', train=True, transform=transforms.ToTensor(), download=False)
test_dataset = CIFAR100(root='./', train=False, transform=transforms.ToTensor(), download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# 定义CNN模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, padding=2, stride=1)self.relu1 = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(in_features=16*6*6, out_features=100)def forward(self, x):x = self.pool1(self.relu1(self.conv1(x)))x = self.pool2(self.relu2(self.conv2(x)))x = x.view(-1, 16*6*6)  # Flattenx = self.fc1(x)return x# 训练模型
def train(model, train_loader, optimizer, criterion, epochs):model.train()for epoch in range(epochs):for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = model.forward(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()if i % 100 == 0:print(f"Epoch [{epoch + 1}/{epochs}], step {i + 1}/{len(train_loader)}, Loss: {loss.item()}")# 测试模型
def predict(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for images, labels in test_loader:outputs = model.forward(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy on test set: {100 * correct / total:.2f}%')# 初始化模型、损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# 训练并测试模型
train(model, train_loader, optimizer, criterion, epochs=num_epochs)# 模型保存并测试
torch.save(model.state_dict(), 'cnn_state_dict.pth')# 加载模型
model = CNN()
model.load_state_dict(torch.load('cnn_state_dict.pth'))
predict(model, test_loader)

4.2 CIFAR-10

CIFAR-10 数据集是一个用于普适物体识别的计算机视觉数据集, 包含 60000张 32x32 的 RGB 彩色图片, 总共分为 10 个类别。 每个类别包含 6000 张图像, 其中 50000 张用于训练集, 10000 张用于测试集。

实验代码 

# python --version     3.8.10
# PyTorch --version   2.3.1
# torchvision --version 0.18.1
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10# 定义超参数
num_epochs = 1
batch_size = 64
learning_rate = 0.001# 加载和预处理数据
train_dataset = CIFAR10(root='./', train=True, transform=transforms.ToTensor(), download=False)
test_dataset = CIFAR10(root='./', train=False, transform=transforms.ToTensor(), download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# 定义CNN模型
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, padding=2, stride=1)self.relu1 = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(in_features=16*6*6, out_features=10)def forward(self, x):x = self.pool1(self.relu1(self.conv1(x)))x = self.pool2(self.relu2(self.conv2(x)))x = x.view(-1, 16*6*6)  # Flattenx = self.fc1(x) #会自动加softmaxreturn x# 训练模型
def train(model, train_loader, optimizer, criterion, epochs):model.train()for epoch in range(epochs):for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = model.forward(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()if i % 100 == 0:print(f"Epoch [{epoch + 1}/{epochs}], step {i + 1}/{len(train_loader)}, Loss: {loss.item()}")# 测试模型
def predict(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for images, labels in test_loader:outputs = model.forward(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy on test set: {100 * correct / total:.2f}%')# 初始化模型、损失函数和优化器
model = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# 训练并测试模型
train(model, train_loader, optimizer, criterion, epochs=num_epochs)# 模型保存并测试
torch.save(model.state_dict(), 'cnn_state_dict.pth')# 加载模型
model = CNN()
model.load_state_dict(torch.load('cnn_state_dict.pth'))
predict(model, test_loader)

相关文章:

深度学习的应用

目录 一、机器视觉 1.1 应用场景 1.2 常见的计算机视觉任务 1.2.1 图像分类 1.2.2 目标检测 1.2.3 图像分割 二、自然语言处理 三、推荐系统 3.1 常用的推荐系统算法实现方案 四、图像分类实验补充 4.1 CIFAR-100 数据集实验 实验代码 4.2 CIFAR-10 实验代码 深…...

基于51单片机和WS2812B彩色灯带的流水灯

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码四、主函数总结 系列文章目录 前言 用彩色灯带按自己想法DIY一条流水灯,谁不喜欢呢? 所用单片机:STC15W204S (也可以用其他1T单片机,例如,S…...

DFS(深度优先搜索)与回溯算法详解

DFS(深度优先搜索)与回溯算法详解 一、DFS 基础 1. 什么是DFS? 深度优先搜索(Depth-First Search,DFS)是一种用于遍历或搜索树或图的算法。其核心思想是: 一条路走到黑:从起点出发…...

服务器虚拟化技术详解与实战:架构、部署与优化

📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 引言 在现代 IT 基础架构中,服务器虚拟化已成为提高资源利用率、降低运维成本、提升系统灵活性的重要手段。通过服务…...

数据分析系列--②RapidMiner导入数据和存储过程

一、下载数据 二、导入数据 1. 在本地计算机中创建3个文件夹 2. 从本地选择.csv或.xlsx 三、界面说明 四、存储过程 1.保存 Congratulations, you are done. 一、下载数据 点击下载AssociationAnalysisData.xlsx数据集 二、导入数据 1. 在本地计算机中创建3个文件夹 2. 从…...

CSS 背景与边框:从基础到高级应用

CSS 背景与边框:从基础到高级应用 1. CSS 背景样式1.1 背景颜色示例代码:设置背景颜色 1.2 背景图像示例代码:设置背景图像 1.3 控制背景平铺行为示例代码:控制背景平铺 1.4 调整背景图像大小示例代码:调整背景图像大小…...

国内外人工智能AI工具网站大全(一键收藏,应有尽有)

本文由 大侠(AhcaoZhu)原创,转载请声明。 链接: https://blog.csdn.net/Ahcao2008 国内外人工智能AI工具网站大全(一键收藏,应有尽有) 摘要一、AI写作工具二、AI图像工具2.1、常用AI图像工具2.2、AI图片插画生成2.3、AI图片背景移…...

Java中初步使用websocket(springBoot版本)

一、什么是websocket WebSocket是一种在Web应用程序中实现实时双向通信的协议。它为浏览器和服务器之间提供了一种持久连接,在一个连接上可以双向传输数据。相比传统的HTTP协议,WebSocket具有更低的延迟和更高的效率。 WebSocket使用了类似于握手的方式来…...

2025年大年初一篇,C#调用GPU并行计算推荐

C#调用GPU库的主要目的是利用GPU的并行计算能力,加速计算密集型任务,提高程序性能,支持大规模数据处理,优化资源利用,满足特定应用场景的需求,并提升用户体验。在需要处理大量并行数据或进行复杂计算的场景…...

K8S ReplicaSet 控制器

一、理论介绍 今天我们来实验 ReplicaSet 控制器(也叫工作负载)。官网描述如下: 1、是什么? ReplicaSet 副本集, 维护一组稳定的副本 Pod 集合。 2、为什么需要? 解决 pod 被删除了,不能自我恢…...

FreeRTOS学习 --- 任务调度

开启任务调度器 作用:用于启动任务调度器,任务调度器启动后, FreeRTOS 便会开始进行任务调度 该函数内部实现,如下: 1、创建空闲任务(优先级最低) 2、如果使能软件定时器,则创建定…...

【小鱼闪闪】单片机开发工具——米思齐软件下载安装(图文)

浏览器打开网址 mixly.org, 在软件平台选择mixly离线版。 最新版本为3.0,会支持audinio, ESP32、ESP8266 , 可以选择下载安装器或者完整版。 这里选择下载安装器,下载后运行“一键更新.bat”,即可自动下载最新版本的M…...

MFC开发,给对话框添加垂直滚动条并解决鼠标滚动响应的问题

无论在使用QT或者MFC进行界面开发时,都会出现在一个对话框里面存在好多的选项,导致对话框变得非常长或者非常大,就会显现的不美观,在这种情况下通常是添加一个页面的滚动条来解决这个问题,下面我们就来介绍给MFC的对话…...

动态规划DP 最长上升子序列模型 导弹防御模型(题目分析+C++完整代码实现)

概览检索 动态规划DP 最长上升子序列模型 导弹防御系统 原题链接 AcWiing 187. 导弹防御系统 题目描述 为了对抗附近恶意国家的威胁,R国更新了他们的导弹防御系统。 一套防御系统的导弹拦截高度要么一直 严格单调 上升要么一直 严格单调 下降。 例如&#xff0…...

LevelDB 源码阅读:写入键值的工程实现和优化细节

读、写键值是 KV 数据库中最重要的两个操作,LevelDB 中提供了一个 Put 接口,用于写入键值对。使用方法很简单: leveldb::Status status leveldb::DB::Open(options, "./db", &db); status db->Put(leveldb::WriteOptions…...

药店药品销售管理系统的设计与实现

标题:药店药品销售管理系统的设计与实现 内容:1.摘要 摘要:本文介绍了药店药品销售管理系统的设计与实现。该系统旨在提高药店的运营效率和管理水平,通过信息化手段实现药品销售、库存管理、财务管理等功能。本文详细阐述了系统的需求分析、设计思路、技…...

人格分裂(交互问答)-小白想懂Elasticsearch

通过交互式追问了解一个中间件 ? 啥是Elasticsearch ! 分布式搜索和分析引擎 ? 为啥是分布式搜索,单体难道用不了吗 ? 实际上是说这个东西可以分布式部署 ! 单机可用但扩展性差,分布式通过分片、副本和负载均衡实现海量数据存储与高并发处理 ? 提…...

【论文投稿-第八届智能制造与自动化学术会议(IMA 2025)】HTML, CSS, JavaScript:三者的联系与区别

大会官网:www.icamima.org 目录 前言 一、HTML(超文本标记语言):网页的骨架 HTML 的作用: 例子: 总结: 二、CSS(层叠样式表):网页的外观设计 CSS 的…...

python | OpenCV小记(一):cv2.imread(f) 读取图像操作(待更新)

python | OpenCV小记(一):cv2.imread(f)读取图像操作 1. 为什么 [:, :, 0] 提取的是第一个通道(B 通道)?OpenCV 的通道存储格式索引操作 [:, :, 0] 的解释常见误解 1. 为什么 [:, :,…...

网络工程师 (9)文件管理

一、树形目录结构 (一)定义与构成 树形目录结构由一个根目录和若干层子文件夹(或称为子目录)组成,它像一棵倒置的树。这棵树的根称为根文件夹(也叫根目录),从根向下,每一…...

Java中的线程池参数(详解)

public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {} 此构造方法的参数如下&#xff1a; int corePoolSize&…...

2 MapReduce

2 MapReduce 1. MapReduce 介绍1.1 MapReduce 设计构思 2. MapReduce 编程规范3. Mapper以及Reducer抽象类介绍1.Mapper抽象类的基本介绍2.Reducer抽象类基本介绍 4. WordCount示例编写5. MapReduce程序运行模式6. MapReduce的运行机制详解6.1 MapTask 工作机制6.2 ReduceTask …...

如何用函数去计算x年x月x日是(C#)

如何用函数去计算x年x月x日是? 由于现在人工智能的普及,我们往往会用计算机去算,或者去记录事情 1.计算某一年某一个月有多少天 2.计算某年某月某日是周几 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threadin…...

开发过程中如何减少属性注释?

一、注释冗余 举个例子&#xff0c;我们在开发项目中肯定会有状态字段&#xff0c;现在有个工单状态枚举 StatusEnum.java package cn.zxj.note;/*** author: Administrator* since: 2025/1/30 14:40* description:*/ public enum StatusEnum {TO_BE_SUBMITTED(1,"待提交…...

NX/UG二次开发—CAM—快速查找程序参数名称

使用UF_PARAM_XXX读取或设置参数时,会发现程序中有一个INT类型参数param_index,这个就是对应程序中的参数,比如读取程序余量,则param_index = UF_PARAM_STOCK_PART,读取程序的加工坐标系则param_index = UF_PARAM_MCS等等。 你需要读取什么参数,只要只能在uf_param_indic…...

socket实现HTTP请求,参考HttpURLConnection源码解析

背景 有台服务器&#xff0c;网卡绑定有2个ip地址&#xff0c;分别为&#xff1a; A&#xff1a;192.168.111.201 B&#xff1a;192.168.111.202 在这台服务器请求目标地址 C&#xff1a;192.168.111.203 时必须使用B作为源地址才能访问目标地址C&#xff0c;在这台服务器默认…...

访问CMOS RAM

实验内容、程序清单及运行结果 访问CMOS RAM&#xff08;课本实验14&#xff09; 代码如下&#xff1a; assume cs:code data segment time db yy/mm/dd hh:mm:ss$ ;int 21h 显示字符串&#xff0c;要求以$结尾 table db 9,8,7,4,2,0 ;各时间量的存放单元 data ends cod…...

解决AnyConnect开机自启动问题

文章目录 一、问题描述二、解决方案 (Windows)1.开启-设置2.点击“应用”3.点击“启动”&#xff0c;选择“关” 三、参考文章 一、问题描述 学校指定的VPN总是开机自启动&#xff0c;然而 设置-Preferences 中却没有取消开机自启的选项。 似乎开机自启是必然的&#xff0c;我…...

芯片AI深度实战:进阶篇之vim内verilog实时自定义检视

【痛点】 传统Verilog开发中,工程师不断"编码→仿真→查错"的循环。本文整合AST解析与Vim编辑器,在编码阶段即实现: ✔️ 自动标记逻辑问题 ✔️ AI+ 发现涉及多模块逻辑错误 ✔️ 强制代码风格 【解决方案】 1️⃣ 基于AST的精准模式匹配 - 深度集成…...

数据结构实战之线性表(一)

一.线性表的定义和特点 线性表的定义 线性表是一种数据结构&#xff0c;它包含了一系列具有相同特性的数据元素&#xff0c;数据元素之间存在着顺序关系。例如&#xff0c;26个英文字母的字符表 ( (A, B, C, ....., Z) ) 就是一个线性表&#xff0c;其中每个字母就是一个数据…...