当前位置: 首页 > news >正文

【Block总结】HiLo注意力,局部自注意力捕获细粒度的高频信息,通过全局注意力捕获低频信息|即插即用

一、论文信息

  • 标题: Fast Vision Transformers with HiLo Attention
  • GitHub链接: https://github.com/ziplab/LITv2
  • 论文链接: arXiv
    在这里插入图片描述

二、创新点

  • HiLo注意力机制: 本文提出了一种新的自注意力机制——HiLo注意力,旨在同时捕捉图像中的高频和低频特征。该机制通过将自注意力分为两个分支,分别处理高频(Hi-Fi)和低频(Lo-Fi)信息,从而提高计算效率和模型性能[1][5][16]。

  • LITv2模型: 基于HiLo注意力机制,LITv2模型在多个计算机视觉任务上表现优越,尤其是在处理高分辨率图像时,显著提升了速度和准确性[1][5][16]。

  • 相对位置编码优化: 采用3×3的深度卷积层替代传统的固定相对位置编码,进一步加快了密集预测任务的训练和推理速度[1][5][16]。

三、方法

  • 整体架构: LITv2模型分为多个阶段,生成金字塔特征图,适用于密集预测任务。模型通过局部窗口自注意力捕捉细节,同时使用全局自注意力处理低频信息,确保性能与效率的平衡[1][5][16]。

  • 特征处理: 输入图像被切分为固定大小的图像块(patch),每个patch通过线性变换映射到高维特征空间。HiLo注意力机制在每个Transformer模块中使用标准的残差连接和LayerNorm层,以稳定训练并保持特征传递[1][5][16]。
    在这里插入图片描述

四、效果

  • 性能提升: LITv2在标准基准测试中表现优于大多数现有的视觉Transformer模型,尤其在处理高分辨率图像时,HiLo机制在CPU上比传统的局部窗口注意力机制快1.6倍,比空间缩减注意力机制快1.4倍[1][5][16]。

  • 计算效率: 通过将注意力机制分为高频和低频,LITv2能够有效减少计算量,同时保持或提升模型的准确性和速度[1][5][16]。

五、实验结果

  • 基准测试: 论文中通过实际平台的速度评估,展示了LITv2在GPU和CPU上的优越性能。实验结果表明,HiLo注意力机制在多个视觉任务中均表现出色,尤其是在图像分类和物体检测任务中[1][5][16]。

  • FLOPs与吞吐量: 研究表明,HiLo机制在FLOPs、吞吐量和内存消耗方面均优于现有的注意力机制,证明了其在实际应用中的有效性[1][5][16]。

六、总结

Fast Vision Transformers with HiLo Attention通过引入HiLo注意力机制,成功地将高频和低频信息的处理分开,显著提升了视觉Transformer的性能和效率。LITv2模型在多个计算机视觉任务中表现优异,展示了其在实际应用中的潜力。该研究为未来的视觉模型设计提供了新的思路,尤其是在处理高分辨率图像时的计算效率和准确性方面[1][5][16]。

七、代码

import os
import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import mathclass HiLo(nn.Module):"""HiLo AttentionLink: https://arxiv.org/abs/2205.13213"""def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=2,alpha=0.5):super().__init__()assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."head_dim = int(dim / num_heads)self.dim = dim# self-attention heads in Lo-Fiself.l_heads = int(num_heads * alpha)# token dimension in Lo-Fiself.l_dim = self.l_heads * head_dim# self-attention heads in Hi-Fiself.h_heads = num_heads - self.l_heads# token dimension in Hi-Fiself.h_dim = self.h_heads * head_dim# local window size. The `s` in our paper.self.ws = window_sizeif self.ws == 1:# ws == 1 is equal to a standard multi-head self-attentionself.h_heads = 0self.h_dim = 0self.l_heads = num_headsself.l_dim = dimself.scale = qk_scale or head_dim ** -0.5# Low frequence attention (Lo-Fi)if self.l_heads > 0:if self.ws != 1:self.sr = nn.AvgPool2d(kernel_size=window_size, stride=window_size)self.l_q = nn.Linear(self.dim, self.l_dim, bias=qkv_bias)self.l_kv = nn.Linear(self.dim, self.l_dim * 2, bias=qkv_bias)self.l_proj = nn.Linear(self.l_dim, self.l_dim)# High frequence attention (Hi-Fi)if self.h_heads > 0:self.h_qkv = nn.Linear(self.dim, self.h_dim * 3, bias=qkv_bias)self.h_proj = nn.Linear(self.h_dim, self.h_dim)def hifi(self, x):B, H, W, C = x.shapeh_group, w_group = H // self.ws, W // self.wstotal_groups = h_group * w_groupx = x.reshape(B, h_group, self.ws, w_group, self.ws, C).transpose(2, 3)qkv = self.h_qkv(x).reshape(B, total_groups, -1, 3, self.h_heads, self.h_dim // self.h_heads).permute(3, 0, 1,4, 2, 5)q, k, v = qkv[0], qkv[1], qkv[2]  # B, hw, n_head, ws*ws, head_dimattn = (q @ k.transpose(-2, -1)) * self.scale  # B, hw, n_head, ws*ws, ws*wsattn = attn.softmax(dim=-1)attn = (attn @ v).transpose(2, 3).reshape(B, h_group, w_group, self.ws, self.ws, self.h_dim)x = attn.transpose(2, 3).reshape(B, h_group * self.ws, w_group * self.ws, self.h_dim)x = self.h_proj(x)return xdef lofi(self, x):B, H, W, C = x.shapeq = self.l_q(x).reshape(B, H * W, self.l_heads, self.l_dim // self.l_heads).permute(0, 2, 1, 3)if self.ws > 1:x_ = x.permute(0, 3, 1, 2)x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)kv = self.l_kv(x_).reshape(B, -1, 2, self.l_heads, self.l_dim // self.l_heads).permute(2, 0, 3, 1, 4)else:kv = self.l_kv(x).reshape(B, -1, 2, self.l_heads, self.l_dim // self.l_heads).permute(2, 0, 3, 1, 4)k, v = kv[0], kv[1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)x = (attn @ v).transpose(1, 2).reshape(B, H, W, self.l_dim)x = self.l_proj(x)return xdef forward(self, x):B, N, C = x.shapeH = W = int(N ** 0.5)x = x.reshape(B, H, W, C)if self.h_heads == 0:x = self.lofi(x)return x.reshape(B, N, C)if self.l_heads == 0:x = self.hifi(x)return x.reshape(B, N, C)hifi_out = self.hifi(x)lofi_out = self.lofi(x)x = torch.cat((hifi_out, lofi_out), dim=-1)x = x.reshape(B, N, C)return xdef flops(self, N):H = int(N ** 0.5)# when the height and width cannot be divided by ws, we pad the feature map in the same way as Swin Transformer for object detection/segmentationHp = Wp = self.ws * math.ceil(H / self.ws)Np = Hp * Wp# For Hi-Fi# qkvhifi_flops = Np * self.dim * self.h_dim * 3nW = Np / self.ws / self.wswindow_len = self.ws * self.ws# q @ k and attn @ vwindow_flops = window_len * window_len * self.h_dim * 2hifi_flops += nW * window_flops# projectionhifi_flops += Np * self.h_dim * self.h_dim# for Lo-Fi# qlofi_flops = Np * self.dim * self.l_dim# H = int(Np ** 0.5)kv_len = (Hp // self.ws) ** 2# k, vlofi_flops += kv_len * self.dim * self.l_dim * 2# q @ k and attn @ vlofi_flops += Np * self.l_dim * kv_len * 2# projectionlofi_flops += Np * self.l_dim * self.l_dimreturn hifi_flops + lofi_flopsif __name__ == "__main__":dim=256# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, height, width,channels)x = torch.randn(1,40*40,dim).to(device)# 初始化 HWD 模块block = HiLo(dim)print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)

输出结果:
在这里插入图片描述

相关文章:

【Block总结】HiLo注意力,局部自注意力捕获细粒度的高频信息,通过全局注意力捕获低频信息|即插即用

一、论文信息 标题: Fast Vision Transformers with HiLo AttentionGitHub链接: https://github.com/ziplab/LITv2论文链接: arXiv 二、创新点 HiLo注意力机制: 本文提出了一种新的自注意力机制——HiLo注意力,旨在同时捕捉图像中的高频和低频特征。该机制通过将…...

python 使用Whisper模型进行语音翻译

目录 一、Whisper 是什么? 二、Whisper 的基本命令行用法 三、代码实践 四、是否保留Token标记 五、翻译长度问题 六、性能分析 一、Whisper 是什么? Whisper 是由 OpenAI 开源的一个自动语音识别(Automatic Speech Recognition, ASR)系统。它的主要特点是: 多语言…...

C# Winform enter键怎么去关联button

1.关联按钮上的Key事件按钮上的keypress,keydown,keyup事件随便一个即可private void textBox1_KeyDown(object sender, KeyEventArgs e){if (e.KeyCode Keys.Enter){this.textBox2.Focus();}}2.窗体上的事件private void textBox2_KeyPress(object sen…...

Github 2025-01-30 Go开源项目日报 Top10

根据Github Trendings的统计,今日(2025-01-30统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Go项目10Ollama: 本地大型语言模型设置与运行 创建周期:248 天开发语言:Go协议类型:MIT LicenseStar数量:42421 个Fork数量:2724 次关注人…...

电路研究9.2.6——合宙Air780EP中HTTP——HTTP GET 相关命令使用方法研究

这个也是一种协议类型: 14.16 使用方法举例 根据之前多种类似的协议的相关信息: HTTP/HTTPS:超文本传输协议(HTTP)用于Web数据的传输,而HTTPS是HTTP的安全版本,使用SSL/TLS进行加密。与FTP相比&…...

Java手写简单Merkle树

Java手写Merkle树代码 package com.blockchain.qgy.component;import com.blockchain.qgy.model.MerkleTreeNode; import com.blockchain.qgy.util.SHAUtil;import java.util.*;public class MerkleTree<T> {//merkle树private List<MerkleTreeNode<T>> lis…...

DeepSeek的使用技巧介绍

DeepSeek是一款由杭州深度求索人工智能技术有限公司开发的AI工具&#xff0c;结合了自然语言处理和深度学习技术&#xff0c;能够完成多种任务&#xff0c;如知识问答、数据分析、文案创作、代码开发等。以下将从使用技巧、核心功能及注意事项等方面详细介绍DeepSeek的使用方法…...

19 压测和常用的接口优化方案

高并发的平台应用&#xff0c;项目上线前离不开一个重要步骤就是压测&#xff0c;压测对于编码中的资源是否问题的排查&#xff0c;性能的调优都是离不开的。测试还要做测试报告&#xff0c;出具了测试报告给到运维团队才能上线。 压测的测试报告主要有以下几个方面:1.响应时间…...

AI应用部署——streamlit

如何把项目部署到一个具有公网ip地址的服务器上&#xff0c;让他人看到&#xff1f; 可以利用 streamlit 的社区云免费部署 1、生成requirements.txt文件 终端输入pip freeze > requirements.txt即可 requirements.txt里既包括自己安装过的库&#xff0c;也包括这些库的…...

NLP自然语言处理通识

目录 ELMO 一、ELMo的核心设计理念 1. 静态词向量的局限性 2. 动态上下文嵌入的核心思想 3. 层次化特征提取 二、ELMo的模型结构与技术逻辑 1. 双向语言模型&#xff08;BiLM&#xff09; 2. 多层LSTM的层次化表示 三、ELMo的运行过程 1. 预训练阶段 2. 下游任务微调 四、ELMo的…...

C++ 6

C构造函数有几种&#xff0c;分别什么作用 在C中&#xff0c;构造函数有几种不同的类型&#xff0c;每种都有其特定的作用&#xff1a; 默认构造函数&#xff1a;没有参数的构造函数&#xff0c;用于创建对象的默认实例。参数化构造函数&#xff1a;带参数的构造函数&#xf…...

使用QSqlQueryModel创建交替背景色的表格模型

class UserModel(QSqlQueryModel):def __init__(self):super().__init__()self._query "SELECT name, age FROM users"self.refresh()def refresh(self):self.setQuery(self._query)# 重新定义data()方法def data(self, index, role): if role Qt.BackgroundRole…...

jinfo命令详解

jinfo [option]option 有以下这些选项参数 -flag : 打印 指定名称的 jvm 参数值&#xff1b;-flag [|-] : 启动或禁用指定名称的 jvm参数&#xff1b;-flag : 设置指定名称的 jvm 参数值&#xff1b;-sysprops: 打印 java 系统属性-h | -help: 打印 jinfo 命令帮助信息 1&…...

如何在 ACP 中建模复合罐

概括 本篇博文介绍了 ANSYS Composite PrepPost (ACP) 缠绕向导。此工具允许仅使用几个条目自动定义高压罐中常见的悬垂复合结构。 ACP 绕线向导 将必要的信息输入到绕组向导中。重要的是要注意“参考半径”&#xff0c;它代表圆柱截面的半径&#xff0c;以及“轴向”&#x…...

【Java】微服务找不到问题记录can not find user-service

一、问题描述 运行网关微服务与用户微服务后&#xff0c;nacos服务成功注册 但是测试接口的时候网关没有找到相关服务 二、解决方案 我先检查了pom文件确定没问题后查看配置文件 最后发现是配置里spring.application.namexxx-user里面服务的名字后面多了一个空格 三、总结…...

基于Hutool的Merkle树hash值生成工具

SHAUtil工具 package com.blockchain.qgy.util;import com.xiaoleilu.hutool.crypto.digest.DigestUtil; import org.apache.commons.codec.binary.Hex;import java.nio.charset.StandardCharsets; import java.security.MessageDigest;/**** 生成SHA-256的工具** author QGY*…...

Windows系统本地部署deepseek 更改目录

本地部署deepseek 无论是mac还是windows系统本地部署deepseek或者其他模型的命令和步骤是一样的。 可以看: 本地部署deepsek 无论是ollama还是部署LLM时候都默认是系统磁盘&#xff0c;对于Windows系统&#xff0c;我们一般不把应用放到系统盘&#xff08;C:&#xff09;而是…...

深度学习篇---数据存储类型

文章目录 前言第一部分&#xff1a;C语言中的数据存储类型1. char&#xff08;通常是8位&#xff09;优点缺点 2. short&#xff08;通常是16位&#xff09;优点缺点 3. int&#xff08;通常是32位&#xff09;优点缺点 4. long&#xff08;通常是32位或64位&#xff09;优点缺…...

可被electron等调用的Qt截图-录屏工具【源码开放】

1. 工具功能简介&#xff1a; (1)、QT5.15.2截图工具&#xff08;exe&#xff09;可单独使用或嵌入IM&#xff08;嵌入方法参照&#xff1a;https://gitee.com/lykiao/yfscreenshot_release&#xff09; (2)、支持通过Windows消息通知截图成功或取消 (3)、支持圆形、矩形、线条…...

electron 应用开发实践

参考链接&#xff1a; https://blog.csdn.net/2401_83384536/article/details/140549279...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...