当前位置: 首页 > news >正文

什么是门控循环单元?

一、概念

        门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖捕捉能力,同时提高了计算效率。GRU通过引入两个门(重置门和更新门)来控制信息的流动。与LSTM不同,GRU没有单独的细胞状态,而是将隐藏状态直接作为信息传递的载体,因此结构更简单,计算效率更高。

二、核心算法

        令x_{t}为时间步 t 的输入向量,h_{t-1}为前一个时间步的隐藏状态向量,h_{t}为当前时间步的隐藏状态向量,r_{t}为当前时间步的重置门向量,z_{t}为当前时间步的更新门向量,\bar{h_{t}}为当前时间步的候选隐藏状态向量,W_{r},W_{z},W_{h}分别为各门的权重矩阵,b_{r},b_{z},b_{h}为偏置向量,\sigma为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。

1、重置门

        重置门控制前一个时间步的隐藏状态对当前时间步的影响。通过sigmoid激活函数,重置门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

r_{t} = \sigma(W_{r} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{r})

2、更新门

        更新门控制前一个时间步的隐藏状态和当前时间步的候选隐藏状态的混合比例。通过sigmoid激活函数,更新门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

z_{t} = \sigma(W_{z} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{z})

3、候选隐藏状态

        候选隐藏状态结合当前输入和前一个时间步的隐藏状态生成。重置门的输出与前一个隐藏状态相乘,表示保留的旧信息。然后与当前输入一起通过tanh激活函数生成候选隐藏状态。

\bar{h_{t}} = tanh(W_{h} \cdot \left [ r_{t} \ast h_{t-1}, x_{t} \right ] + b_{h})

4、隐藏状态更新

        隐藏状态结合更新门的结果进行更新。更新门的输出与前一个隐藏状态相乘,表示保留的旧信息。更新门的补数与候选隐藏状态相乘,表示写入的新信息。两者相加得到当前时间步的隐藏状态。

h_{t} = (1-z_{t}) \ast h_{t-1} + z_{t} \ast \bar{h_{t}}

三、python实现

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt# 设置随机种子
torch.manual_seed(0)
np.random.seed(0)# 生成正弦波数据
timesteps = 1000
sin_wave = np.array([np.sin(2 * np.pi * i / timesteps) for i in range(timesteps)])# 创建数据集
def create_dataset(data, time_step=1):dataX, dataY = [], []for i in range(len(data) - time_step - 1):a = data[i:(i + time_step)]dataX.append(a)dataY.append(data[i + time_step])return np.array(dataX), np.array(dataY)time_step = 10
X, y = create_dataset(sin_wave, time_step)# 数据预处理
X = X.reshape(X.shape[0], time_step, 1)
y = y.reshape(-1, 1)# 转换为Tensor
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32)# 划分训练集和测试集
train_size = int(len(X) * 0.7)
test_size = len(X) - train_size
trainX, testX = X[:train_size], X[train_size:]
trainY, testY = y[:train_size], y[train_size:]# 定义RNN模型
class GRUModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(GRUModel, self).__init__()self.hidden_size = hidden_sizeself.gru = nn.GRU(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(1, x.size(0), self.hidden_size)out, _ = self.gru(x, h0)out = self.fc(out[:, -1, :])return outinput_size = 1
hidden_size = 50
output_size = 1
model = GRUModel(input_size, hidden_size, output_size)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# 训练模型
num_epochs = 50
for epoch in range(num_epochs):model.train()optimizer.zero_grad()outputs = model(trainX)loss = criterion(outputs, trainY)loss.backward()optimizer.step()if (epoch + 1) % 10 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 预测
model.eval()
train_predict = model(trainX)
test_predict = model(testX)
train_predict = train_predict.detach().numpy()
test_predict = test_predict.detach().numpy()# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(sin_wave, label='Original Data')
plt.plot(np.arange(time_step, time_step + len(train_predict)), train_predict, label='Training Predict')
plt.plot(np.arange(time_step + len(train_predict), time_step + len(train_predict) + len(test_predict)), test_predict, label='Test Predict')
plt.legend()
plt.show()

四、总结

        GRU的结构比LSTM更简单,只有两个门(重置门和更新门),没有单独的细胞状态。这使得GRU的计算复杂度较低,训练和推理速度更快。通过引入重置门和更新门,GRU也有效地解决了标准RNN在处理长序列时的梯度消失和梯度爆炸问题。然而,在需要更精细的门控制和信息流动的任务中,LSTM的性能可能优于GRU。因此在我们实际的建模过程中,可以根据数据特点选择合适的RNN系列模型,并没有哪个模型能在所有任务中都具有优势。

相关文章:

什么是门控循环单元?

一、概念 门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖…...

Google Chrome-便携增强版[解压即用]

Google Chrome-便携增强版 链接:https://pan.xunlei.com/s/VOI0OyrhUx3biEbFgJyLl-Z8A1?pwdf5qa# a 特点描述 √ 无升级、便携式、绿色免安装,即可以覆盖更新又能解压使用! √ 此增强版,支持右键解压使用 √ 加入Chrome增强…...

智慧园区综合管理系统如何实现多个维度的高效管理与安全风险控制

内容概要 在当前快速发展的城市环境中,智慧园区综合管理系统正在成为各类园区管理的重要工具,无论是工业园、产业园、物流园,还是写字楼与公寓,都在积极寻求如何提升管理效率和保障安全。通过快鲸智慧园区管理系统,用…...

【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录 1. 梯度基本计算 2. 控制梯度计算 3. 梯度计算注意 4. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活…...

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(协议层封装)

目录 协议层设计,以IIC为例子 关于软硬件IIC 设计的一些原则 完成协议层的抽象 刨析我们的原理 如何完成我们的抽象 插入几个C语言小技巧 完成软件IIC通信 开始我们的IIC通信 结束我们的IIC通信 发送一个字节 (重要)完成命令传递和…...

Mac M1 源码安装FFmpeg,开启enable-gpl 和 lib x264

1、第一步:下载并安装minicoda curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.shsh Miniconda3-latest-MacOSX-arm64.sh2、第二步:安装必要的依赖 conda install -c conda-forge gcc make nasm yasm3、第三步&#xff…...

【Quest开发】手柄单手抓握和双手抓握物体切换

V72更新以后非常智能哈,配置物体简单多了。 选择需要被抓取的物体鼠标右键单击它,点Add Grab Interaction,按它要求的配置就行 配好以后长这样 把这个选项取消勾选就能切换成双手抓一个物体了,不需要像以前一样用各种grabTransfo…...

DB-GPT试用

继续上一篇 DB-GPT的安装 https://blog.csdn.net/berryreload/article/details/142845190 访问http://xxx:5670 访问这里 创建数据库连接 http://10.168.1.208:5670/construct/database 访问这里,点击刷新 http://10.168.1.208:5670/construct/app 刷新后才能出…...

​《Ollama Python 库​》

Ollama Python 库 Ollama Python 库提供了将 Python 3.8 项目与 Ollama 集成的最简单方法。 先决条件 应该安装并运行 Ollama拉取一个模型以与库一起使用&#xff1a;例如ollama pull <model>ollama pull llama3.2 有关可用模型的更多信息&#xff0c;请参阅 Ollama.com。…...

Java的Integer缓存池

Java的Integer缓冲池&#xff1f; Integer 缓存池主要为了提升性能和节省内存。根据实践发现大部分的数据操作都集中在值比较小的范围&#xff0c;因此缓存这些对象可以减少内存分配和垃圾回收的负担&#xff0c;提升性能。 在-128到 127范围内的 Integer 对象会被缓存和复用…...

Ubuntu16.04编译安装Cartographer 1.0版本

说明 官方文档 由于Ubuntu16.04已经是很老的系统&#xff0c;如果直接按照Cartographer官方安装文档安装会出现代码编译失败的问题&#xff0c;本文给出了解决这些问题的办法。正常情况下执行本文给出的安装方法即可成功安装。 依赖安装 # 这里和官方一致 # Install the req…...

Qt调用FFmpeg库实时播放UDP组播视频流

基于以下参考链接&#xff0c;通过改进实现实时播放UDP组播视频流 https://blog.csdn.net/u012532263/article/details/102736700 源码在windows&#xff08;qt-opensource-windows-x86-5.12.9.exe&#xff09;、ubuntu20.04.6(x64)(qt-opensource-linux-x64-5.12.12.run)、以…...

C# 类与对象详解

.NET学习资料 .NET学习资料 .NET学习资料 在 C# 编程中&#xff0c;类与对象是面向对象编程的核心概念。它们让开发者能够将数据和操作数据的方法封装在一起&#xff0c;从而构建出模块化、可维护且易于扩展的程序。下面将详细介绍 C# 中类与对象的相关知识。 一、类的定义 …...

【Elasticsearch 基础入门】Centos7下Elasticsearch 7.x安装与配置(单机)

Elasticsearch系列文章目录 【Elasticsearch 基础入门】一文带你了解Elasticsearch&#xff01;&#xff01;&#xff01;【Elasticsearch 基础入门】Centos7下Elasticsearch 7.x安装与配置&#xff08;单机&#xff09; 目录 Elasticsearch系列文章目录前言单机模式1. 安装 J…...

大模型本地部署使用方法(Ollama脚手架工具、FisherAI浏览器大模型插件、AnythingLLM大模型集成应用平台)

一、Ollama &#xff08;一&#xff09;Ollama简介 Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供简单高效的接口&#xff0c;用于创建、运行和管理这些模型&#xff0c;方便用户直接使用&#xff0c;也方便用作后台服务支撑其它应用程序。熟悉网…...

【华为OD-E卷 - 报数游戏 100分(python、java、c++、js、c)】

【华为OD-E卷 - 报数游戏 100分&#xff08;python、java、c、js、c&#xff09;】 题目 100个人围成一圈&#xff0c;每个人有一个编码&#xff0c;编号从1开始到100。 他们从1开始依次报数&#xff0c;报到为M的人自动退出圈圈&#xff0c;然后下一个人接着从1开始报数&…...

深入理解Spring框架:从基础到实践

前言 Spring框架是一个开源的企业级应用开发框架&#xff0c;它为Java开发者提供了灵活的架构支持&#xff0c;特别是在依赖注入&#xff08;IOC&#xff09;和面向切面编程&#xff08;AOP&#xff09;方面。本文将通过具体的示例&#xff0c;带你从Spring框架的概述、IOC容器…...

一觉醒来全球编码能力下降100000倍,新手小白的我决定科普C语言——函数

1. 函数的概念 数学中我们其实就⻅过函数的概念&#xff0c;⽐如&#xff1a;⼀次函数 y kx b &#xff0c;k和b都是常数&#xff0c;给⼀个任意的 x&#xff0c;就得到⼀个y值。其实在C语⾔也引⼊函数&#xff08;function&#xff09;的概念&#xff0c;有些翻译为&#xf…...

CentOS 上安装 Go (Golang)

1. 检查系统环境 确保系统为 CentOS 7 或 CentOS 8&#xff0c;或者其他兼容的 Linux 发行版。 cat /etc/os-release2. 安装依赖 安装一些必要的工具&#xff1a; sudo yum update -y sudo yum install -y wget tar3. 下载 Go 从 Go 官方下载页面获取适用于 Linux 的最新版…...

软件模拟I2C案例前提须知——EEPROM芯片之M24C02

引言 了解了I2C的基础知识后&#xff0c;我们将来使用一个I2C案例实践来深入理解I2C通讯&#xff0c;即软件模拟I2C。顾名思义&#xff0c;就是利用软件方式通过模拟I2C协议要求的时序或者说一些相关规定来实现一个I2C通讯协议&#xff0c;然后利用模拟出的I2C协议来实现两个设…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...