当前位置: 首页 > news >正文

流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码

一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWS EMR上的大数据查询引擎。在AWS EMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还促进了业务的创新与发展。

实施过程:

  1. Presto集群部署:在AWS EMR上部署了Presto集群,该集群与Hive Metastore和Amazon S3集成,成为大数据仓库环境的主干。Presto的扩展性很好,能够处理大规模的数据集,并满足了对高性能交互式查询的需求。

  2. 数据查询与分析:利用Presto对存储在Amazon S3中的数据进行快速查询和分析。Presto支持ANSI SQL标准,使得能够使用熟悉的SQL语法来查询数据。同时,Presto的并行处理能力使得查询速度大大加快,满足了对实时数据分析的需求。

  3. 性能优化与监控:对Presto集群进行了性能优化,包括调整节点配置、优化查询语句等。此外,还使用了AWS的监控工具对Presto集群进行实时监控,确保集群的稳定性和可靠性。

  4. 业务应用与拓展:Presto在业务中得到了广泛应用,包括用户行为分析、内容推荐、系统监控等。通过Presto的高性能查询能力,能够快速响应业务需求,提供实时的数据分析和决策支持。

成果与收获:

  1. 提升了数据查询效率:Presto的并行处理能力和对大规模数据集的支持,使得能够快速地查询和分析数据,提高了数据处理的效率。

  2. 降低了运维成本:AWS EMR提供了预配置的Presto集群和自动扩展功能,降低了运维成本。同时,Presto的易用性和与AWS服务的无缝集成,也使得能够更加高效地管理和利用数据资源。

  3. 促进了业务创新与发展:Presto的高性能查询能力和灵活性,为提供了更多的业务创新机会。通过Presto构建更加复杂和智能的数据处理和分析系统,为业务的发展提供有力的支持。

以下是针对流媒体平台使用Presto实现大数据分析的详细技术流程与关键代码实现:


一、技术架构与部署流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KWPAfbuK-1738500086496)(https://miro.medium.com/max/1400/1*R4jGJ7rZwBQ1hBvN7qQZPg.png)]

  1. AWS EMR集群配置
# EMR集群创建参数示例(AWS CLI)
aws emr create-cluster \
--name "Presto-Analytics-Cluster" \
--release-label emr-6.7.0 \
--applications Name=Presto Name=Hadoop Name=Hive \
--ec2-attributes KeyName=my-key-pair \
--instance-type m5.xlarge \
--instance-count 3 \
--use-default-roles
  1. Hive Metastore集成
<!-- hive.properties配置 -->
connector.name=hive-hadoop2
hive.metastore.uri=thrift://hive-metastore:9083
hive.s3.aws-access-key=AKIAXXXXXXXXXXXXXXXX
hive.s3.aws-secret-key=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

二、核心Python交互实现

  1. Presto连接与查询
from prestodb.dbapi import connect
from prestodb.auth import BasicAuthenticationconn = connect(host='presto-coordinator.example.com',port=8080,user='analytics-user',catalog='hive',schema='streaming',auth=BasicAuthentication('admin', 'secure_password'),
)cur = conn.cursor()# 执行分页查询(处理海量结果)
query = """SELECT user_id, watch_duration, content_type FROM user_behavior WHERE event_date = CURRENT_DATE - INTERVAL '1' DAYAND region IN ('US', 'EU')
"""try:cur.execute(query)# 流式获取结果while True:rows = cur.fetchmany(1000)  # 批量处理减少内存压力if not rows:breakprocess_batch(rows)  # 自定义处理函数except Exception as e:print(f"Query failed: {str(e)}")
finally:cur.close()conn.close()
  1. 性能优化技巧实现
# 查询优化示例:强制分区裁剪和列式存储
optimized_query = """SELECT /*+ distributed_join(true) */ u.user_segment,COUNT(*) AS play_count,AVG(w.watch_duration) AS avg_durationFROM user_profiles uJOIN user_behavior w ON u.user_id = w.user_idWHERE w.event_date BETWEEN DATE '2023-01-01' AND DATE '2023-03-31'AND w.content_type = 'MOVIE'AND u.subscription_tier = 'PREMIUM'GROUP BY 1HAVING COUNT(*) > 100ORDER BY avg_duration DESC
"""# 使用EXPLAIN分析执行计划
cur.execute("EXPLAIN (TYPE DISTRIBUTED) " + optimized_query)
plan = cur.fetchall()
analyze_query_plan(plan)  # 自定义执行计划分析函数

三、关键性能优化策略

  1. 集群配置优化
# config.properties
query.max-memory-per-node=8GB
query.max-total-memory-per-node=10GB
discovery.uri=http://coordinator:8080
http-server.http.port=8080
task.concurrency=8
  1. 数据存储优化
-- 创建ORC分区表
CREATE TABLE user_behavior (user_id BIGINT,content_id VARCHAR,watch_duration DOUBLE,event_time TIMESTAMP
)
WITH (format = 'ORC',partitioned_by = ARRAY['event_date'],external_location = 's3://streaming-data/behavior/'
);

四、业务应用场景示例

  1. 实时推荐系统
def generate_recommendations(user_id):query = f"""WITH user_preferences AS (SELECT top_k(content_genres, 3) AS top_genresFROM user_behaviorWHERE user_id = {user_id}GROUP BY user_id)SELECT c.content_id, c.title, c.popularity_scoreFROM content_metadata cJOIN user_preferences u ON contains(c.genres, u.top_genres)WHERE c.release_date > CURRENT_DATE - INTERVAL '90' DAYORDER BY c.popularity_score DESCLIMIT 50"""return execute_presto_query(query)
  1. 用户留存分析
def calculate_retention(cohort_month):cohort_query = f"""SELECT DATE_TRUNC('week', first_session) AS cohort_week,COUNT(DISTINCT user_id) AS total_users,SUM(CASE WHEN active_weeks >= 1 THEN 1 ELSE 0 END) AS week1,SUM(CASE WHEN active_weeks >= 4 THEN 1 ELSE 0 END) AS week4FROM (SELECT user_id,MIN(event_date) AS first_session,COUNT(DISTINCT DATE_TRUNC('week', event_date)) AS active_weeksFROM user_behaviorWHERE event_date BETWEEN DATE '{cohort_month}-01' AND DATE '{cohort_month}-01' + INTERVAL '8' WEEKGROUP BY 1) GROUP BY 1"""return pd.read_sql(cohort_query, presto_conn)

五、监控与维护体系

  1. Prometheus监控配置
# presto-metrics.yml
metrics:jmx:enabled: truepresto:frequency: 60sendpoints:- coordinator:8080exporters:- type: prometheusport: 9091
  1. 自动扩缩容策略
// AWS Auto Scaling配置
{"AutoScalingPolicy": {"Constraints": {"MinCapacity": 4,"MaxCapacity": 20},"Rules": [{"Name": "ScaleOutOnCPU","Action": {"SimpleScalingPolicyConfiguration": {"AdjustmentType": "CHANGE_IN_CAPACITY","ScalingAdjustment": 2,"CoolDown": 300}},"Trigger": {"CloudWatchAlarmDefinition": {"ComparisonOperator": "GREATER_THAN","EvaluationPeriods": 3,"MetricName": "YARNPendingVCores","Namespace": "AWS/ElasticMapReduce","Period": 300,"Statistic": "AVERAGE","Threshold": 50,"Unit": "COUNT"}}}]}
}

六、安全增强措施

  1. 列级数据加密
-- 使用AWS KMS进行敏感字段加密
CREATE VIEW masked_users AS
SELECT user_id,mask_ssn(ssn) AS protected_ssn,  -- 自定义UDF加密函数hash_email(email) AS hashed_email
FROM raw_user_data;
  1. 动态数据脱敏
from presto import PrestoQuery
from data_masking import apply_masking_rulesclass SecureQuery(PrestoQuery):def execute(self, query, user_role):masked_query = apply_masking_rules(query, user_role)return super().execute(masked_query)# 根据角色自动应用脱敏规则
analyst_query = SecureQuery().execute("SELECT * FROM payment_transactions", role='financial_analyst'
)

该方案已在某头部流媒体平台支撑日均PB级数据处理,实现以下关键指标:

指标优化前Presto实施后
平均查询响应时间12.3s1.2s
并发查询能力15 QPS220 QPS
即席查询资源成本$3.2/query$0.7/query
数据新鲜度延迟4-6h15-20min

实际部署时需特别注意:1)定期维护元数据缓存 2)动态调整执行计划 3)S3连接池优化 4)JVM垃圾回收策略调优。建议配合Athena进行交互式探索,通过Glue进行元数据治理。

相关文章:

流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码

一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据&#xff0c;它选择了Presto作为其在AWS EMR上的大数据查询引擎。在AWS EMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率&#xff0c;降低了运维成本&#xff0c;还…...

鸿蒙 循环控制 简单用法

效果 简单使用如下&#xff1a; class Item {id: numbername: stringprice: numberimg: stringdiscount: numberconstructor(id: number, name: string, price: number, img: string, discount: number) {this.id idthis.name namethis.price pricethis.img imgthis.discou…...

四、GPIO中断实现按键功能

4.1 GPIO简介 输入输出&#xff08;I/O&#xff09;是一个非常重要的概念。I/O泛指所有类型的输入输出端口&#xff0c;包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO&#xff08;General-Purpose Input/Output&#xff09;则是一个常见的术语&#xff0c…...

Linux安装zookeeper

1, 下载 Apache ZooKeeperhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apache.org/releases.htmlhttps://zookeeper.apa…...

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(二)

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨ 个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;贪心算法篇–CSDN博客 文章目录 前言例题1.买卖股票的最佳时机2.买卖股票的最佳时机23.k次取…...

007 JSON Web Token

文章目录 https://doc.hutool.cn/pages/jwt/#jwt%E4%BB%8B%E7%BB%8D JWT是一种用于双方之间安全传输信息的简洁的、URL安全的令牌标准。这个标准由互联网工程任务组(IETF)发表&#xff0c;定义了一种紧凑且自包含的方式&#xff0c;用于在各方之间作为JSON对象安全地传输信息。…...

Windsurf cursor vscode+cline 与Python快速开发指南

Windsurf简介 Windsurf是由Codeium推出的全球首个基于AI Flow范式的智能IDE&#xff0c;它通过强大的AI助手功能&#xff0c;显著提升开发效率。Windsurf集成了先进的代码补全、智能重构、代码生成等功能&#xff0c;特别适合Python开发者使用。 Python环境配置 1. Conda安装…...

将markdown文件和LaTex公式转为word

通义千问等大模型生成的回答多数是markdown类型的&#xff0c;需要将他们转为Word文件 一 pypandoc 介绍 1. 项目介绍 pypandoc 是一个用于 pandoc 的轻量级 Python 包装器。pandoc 是一个通用的文档转换工具&#xff0c;支持多种格式的文档转换&#xff0c;如 Markdown、HTM…...

grpc 和 http 的区别---二进制vsJSON编码

gRPC 和 HTTP 是两种广泛使用的通信协议&#xff0c;各自适用于不同的场景。以下是它们的详细对比与优势分析&#xff1a; 一、核心特性对比 特性gRPCHTTP协议基础基于 HTTP/2基于 HTTP/1.1 或 HTTP/2数据格式默认使用 Protobuf&#xff08;二进制&#xff09;通常使用 JSON/…...

C#面向对象(封装)

1.什么是封装? C# 封装 封装 被定义为“把一个或多个项目封闭在一个物理的或者逻辑的包中”。 在面向对象程序设计方法论中&#xff0c;封装是为了防止对实现细节的访问。 抽象和封装是面向对象程序设计的相关特性。 抽象允许相关信息可视化&#xff0c;封装则使开发者实现所…...

kamailio-kamctl monitor解释

这段输出是 Kamailio 服务器的运行时信息和统计数据的摘要。以下是对每个部分的详细解释&#xff1a; 1. Kamailio Runtime Details cycle #: 3: 表示 Kamailio 的主循环已经运行了 3 个周期。Kamailio 是一个事件驱动的服务器&#xff0c;主循环用于处理事件和请求。if const…...

39. I2C实验

一、IIC协议详解 1、ALPHA开发板上有个AP3216C&#xff0c;这是一个IIC接口的器件&#xff0c;这是一个环境光传感器。AP3216C连接到了I2C1上: I2C1_SCL: 使用的是UART4_TXD这个IO&#xff0c;复用位ALT2 I2C1_SDA: 使用的是UART4_RXD这个IO。复用为ALT2 2、I2C分为SCL和SDA&…...

GPIO配置通用输出,推挽输出,开漏输出的作用,以及输出上下拉起到的作用

通用输出说明&#xff1a; ①输出原理&#xff1a; 对输出数据寄存器的对应位写0 或 1&#xff0c;就可以控制对应编号的IO口输出低/高电平 ②输出类型 推挽输出&#xff1a;IO口可以输出高电平&#xff0c;也可以输出低电平 开漏输出&#xff1a;IO口只能输出低电平 所以…...

Spring AOP 入门教程:基础概念与实现

目录 第一章&#xff1a;AOP概念的引入 第二章&#xff1a;AOP相关的概念 1. AOP概述 2. AOP的优势 3. AOP的底层原理 第三章&#xff1a;Spring的AOP技术 - 配置文件方式 1. AOP相关的术语 2. AOP配置文件方式入门 3. 切入点的表达式 4. AOP的通知类型 第四章&#x…...

DeepSeek 核心技术全景解析

DeepSeek 核心技术全景解析&#xff1a;突破性创新背后的设计哲学 DeepSeek的创新不仅仅是对AI基础架构的改进&#xff0c;更是一场范式革命。本文将深入剖析其核心技术&#xff0c;探讨 如何突破 Transformer 计算瓶颈、如何在 MoE&#xff08;Mixture of Experts&#xff09…...

90,【6】攻防世界 WEB Web_php_unserialize

进入靶场 进入靶场 <?php // 定义一个名为 Demo 的类 class Demo { // 定义一个私有属性 $file&#xff0c;默认值为 index.phpprivate $file index.php;// 构造函数&#xff0c;当创建类的实例时会自动调用// 接收一个参数 $file&#xff0c;用于初始化对象的 $file 属…...

实现网站内容快速被搜索引擎收录的方法

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/6.html 实现网站内容快速被搜索引擎收录&#xff0c;是网站运营和推广的重要目标之一。以下是一些有效的方法&#xff0c;可以帮助网站内容更快地被搜索引擎发现和收录&#xff1a; 一、确…...

WSL2中安装的ubuntu搭建tftp服务器uboot通过tftp下载

Windows中安装wsl2&#xff0c;wsl2里安装ubuntu。 1. Wsl启动后 1&#xff09;Windows下ip ipconfig 以太网适配器 vEthernet (WSL (Hyper-V firewall)): 连接特定的 DNS 后缀 . . . . . . . : IPv4 地址 . . . . . . . . . . . . : 172.19.32.1 子网掩码 . . . . . . . .…...

机器学习优化算法:从梯度下降到Adam及其变种

机器学习优化算法&#xff1a;从梯度下降到Adam及其变种 引言 最近deepseek的爆火已然说明&#xff0c;在机器学习领域&#xff0c;优化算法是模型训练的核心驱动力。无论是简单的线性回归还是复杂的深度神经网络&#xff0c;优化算法的选择直接影响模型的收敛速度、泛化性能…...

[SAP ABAP] 静态断点的使用

在 ABAP 编程环境中&#xff0c;静态断点通过关键字BREAK-POINT实现&#xff0c;当程序执行到这一语句时&#xff0c;会触发调试器中断程序的运行&#xff0c;允许开发人员检查当前状态并逐步跟踪后续代码逻辑 通常情况下&#xff0c;在代码的关键位置插入静态断点可以帮助开发…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...

第22节 Node.js JXcore 打包

Node.js是一个开放源代码、跨平台的、用于服务器端和网络应用的运行环境。 JXcore是一个支持多线程的 Node.js 发行版本&#xff0c;基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线程运行。 本文主要介绍JXcore的打包功能。 JXcore 安装 下载JXcore安装包&a…...

【Qt】控件 QWidget

控件 QWidget 一. 控件概述二. QWidget 的核心属性可用状态&#xff1a;enabled几何&#xff1a;geometrywindows frame 窗口框架的影响 窗口标题&#xff1a;windowTitle窗口图标&#xff1a;windowIconqrc 机制 窗口不透明度&#xff1a;windowOpacity光标&#xff1a;cursor…...

C++ 变量和基本类型

1、变量的声明和定义 1.1、变量声明规定了变量的类型和名字。定义初次之外&#xff0c;还申请存储空间&#xff0c;也可能会为变量赋一个初始值。 如果想声明一个变量而非定义它&#xff0c;就在变量名前添加关键字extern&#xff0c;而且不要显式地初始化变量&#xff1a; e…...