当前位置: 首页 > news >正文

独立成分分析 (ICA):用于信号分离或降维

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。

实现 ICA(独立成分分析)

步骤

  1. 生成混合信号数据:创建多个独立信号并混合它们。
  2. 中心化 (Centering) & 白化 (Whitening):对数据进行标准化以提高收敛速度。
  3. 迭代优化解混矩阵:使用非高斯性 (Negentropy) 作为优化目标,应用梯度上升法。
  4. 获得独立成分:通过训练的解混矩阵恢复源信号。

例子代码:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt# 1. 生成数据
torch.manual_seed(42)
num_samples = 1000s1 = torch.sin(torch.linspace(0, 8 * torch.pi, num_samples))  # 正弦波
s2 = torch.sign(torch.sin(torch.linspace(0, 8 * torch.pi, num_samples)))  # 方波
S = torch.stack([s1, s2])  # (2, num_samples)# 2. 生成混合信号 X = A @ S
mixing_matrix = torch.tensor([[1.0, 0.5], [0.5, 1.0]], dtype=torch.float32)
X = mixing_matrix @ S  # (2, num_samples)# 3. 数据预处理 (去中心化)
X_mean = X.mean(dim=1, keepdim=True)
X_centered = X - X_mean# 4. 白化处理 (ZCA 白化)
cov = (X_centered @ X_centered.T) / num_samples
eigvals, eigvecs = torch.linalg.eigh(cov)
eigvals = torch.clamp(eigvals, min=1e-5)  # 避免负数
whitening_matrix = eigvecs @ torch.diag(1.0 / torch.sqrt(eigvals)) @ eigvecs.T
X_white = whitening_matrix @ X_centered  # 白化后的数据# 5. 定义 ICA 模型
class ICA(nn.Module):def __init__(self, n_components):super().__init__()self.W = nn.Parameter(torch.eye(n_components))  # 初始化为单位矩阵def forward(self, X):return self.W @ X# 6. 训练 ICA
ica = ICA(n_components=2)
optimizer = optim.Adam([ica.W], lr=0.01)def neg_entropy(y):return torch.mean(torch.tanh(y), dim=1)num_epochs = 1000
for epoch in range(num_epochs):optimizer.zero_grad()Y = ica(X_white)  # 通过 W 提取信号loss = -torch.sum(neg_entropy(Y))  # 负熵最大化loss.backward()optimizer.step()# 7. 使用 QR 分解保持 W 近似正交with torch.no_grad():ica.W.copy_(torch.linalg.qr(ica.W)[0])  # QR 正交化# 8. 信号恢复
separated = ica(X_white).detach().cpu().numpy()  # 确保 NumPy 兼容性# 9. 绘图
plt.figure(figsize=(10, 5))plt.subplot(3, 1, 1)
plt.plot(S.T.detach().cpu().numpy())  # 确保 NumPy 兼容
plt.title("Original Source Signals")plt.subplot(3, 1, 2)
plt.plot(X.T.detach().cpu().numpy())  # 确保 NumPy 兼容
plt.title("Mixed Signals")plt.subplot(3, 1, 3)
plt.plot(separated.T)  # 直接使用 NumPy 数据
plt.title("Recovered Signals (ICA)")plt.tight_layout()
plt.show()

代码解析

  1. 数据生成

    • 生成两个独立信号:一个 正弦波 和一个 方波
    • 通过 随机混合矩阵 将它们混合成两个观察信号。
  2. 数据预处理

    • 去中心化 (Centering):减去均值,使数据零均值。
    • 白化 (Whitening):对数据进行 PCA 变换,确保协方差矩阵为单位矩阵,提高 ICA 的效果。
  3. ICA 训练

    • 定义解混矩阵 WWW,使用 PyTorch 梯度优化
    • 采用 非高斯性(Negentropy)最大化 原则来优化,使用 tanh 近似 Negentropy。
    • 梯度更新 W,并在训练过程中 保持 W 近似正交 以防止数值发散。
  4. 信号恢复

    • 训练完成后,W 将学习到 解混变换,将 X 投影到独立信号空间,即可恢复原始信号。

相关文章:

独立成分分析 (ICA):用于信号分离或降维

人工智能例子汇总:AI常见的算法和例子-CSDN博客 独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。…...

为什么会有函数调用参数带标签的写法?Swift函数调用的参数传递需要加前缀是否是冗余?函数调用?函数参数?

为什么会有函数调用参数带标签的写法? ObjC函数参数形式与众不同,实参前会加前缀,尤其参数很多的情况,可读性很强。例如: [person setAge: 29 setSex:1 setClass: 35]; 这种参数前面加前缀描述也被叫标签(Label). 注意&#xff0…...

实际操作 检测缺陷刀片

号he 找到目标图像的缺陷位置,首先思路为对图像进行预处理,灰度-二值化-针对图像进行轮廓分析 //定义结构元素 Mat se getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); morphologyEx(thre, tc, MORPH_OPEN, se, Point(-1, -1), 1); …...

使用Pygame制作“青蛙过河”游戏

本篇博客将演示如何使用 Python Pygame 从零开始编写一款 Frogger 风格的小游戏。Frogger 是一款早期街机经典,玩家需要帮助青蛙穿越车水马龙的马路到达对岸。本示例提供了一个精简原型,包含角色移动、汽车生成与移动、碰撞检测、胜利条件等关键点。希望…...

BUU17 [RoarCTF 2019]Easy Calc1

自用 源代码 $(#calc).submit(function(){$.ajax({url:"calc.php?num"encodeURIComponent($("#content").val()),type:GET,success:function(data){$("#result").html(<div class"alert alert-success"><strong>答案:&l…...

堆的实现——对的应用(堆排序)

文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候&#xff0c;需要有二叉树的基础知识&#xff0c;大家可以看我的二叉树文章&#xff1a;二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …&#xff0c;kn−1 } &#xff0c;把它的所有元素按完全⼆叉树…...

新生讲课——图和并查集

1.图的存储 &#xff08;1&#xff09;.邻接矩阵 邻接矩阵可以借助stl中的vector,我们通过开一个二维矩阵,g[u]中存储的是u可以到达的点,定义如下 const int N 2e5 10; vector<int> g[N] 若是遇到带权图则定义如下 const int N 2e5 10; vector <pair <int ,…...

基于深度学习的视觉检测小项目(十七) 用户管理后台的编程

完成了用户管理功能的阶段。下一阶段进入AI功能相关。所有的资源见文章链接。 补充完后台代码的用户管理界面代码&#xff1a; import sqlite3from PySide6.QtCore import Slot from PySide6.QtWidgets import QDialog, QMessageBoxfrom . import user_manage # 导入使用ui…...

实战:利用百度站长平台加速网站收录

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/33.html 利用百度站长平台加速网站收录是一个实战性很强的过程&#xff0c;以下是一些具体的步骤和策略&#xff1a; 一、了解百度站长平台 百度站长平台是百度为网站管理员提供的一系列工…...

web-XSS-CTFHub

前言 在众多的CTF平台当中&#xff0c;作者认为CTFHub对于初学者来说&#xff0c;是入门平台的不二之选。CTFHub通过自己独特的技能树模块&#xff0c;可以帮助初学者来快速入门。具体请看官方介绍&#xff1a;CTFHub。 作者更新了CTFHub系列&#xff0c;希望小伙伴们多多支持…...

【C++】P1957 口算练习题

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述输入格式&#xff1a;输出格式&#xff1a; &#x1f4af;我的做法代码实现&#xff1a; &#x1f4af;老师的做法代码实现&#xff1a; &#x1f4af;对比分析&am…...

第二十三章 MySQL锁之表锁

目录 一、概述 二、语法 三、特点 一、概述 表级锁&#xff0c;每次操作锁住整张表。锁定粒度大&#xff0c;发生锁冲突的概率最高&#xff0c;并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。 对于表级锁&#xff0c;主要分为以下三类&#xff1a; 1. 表锁 2. 元数…...

linux 进程补充

环境变量 基本概念 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数 如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我们的所链接的动态静态库在哪 里&#xff0c;但是照样可以链接成功&#…...

渗透测试之文件包含漏洞 超详细的文件包含漏洞文章

目录 说明 通常分为两种类型&#xff1a; 本地文件包含 典型的攻击方式1&#xff1a; 影响&#xff1a; 典型的攻击方式2&#xff1a; 包含路径解释&#xff1a; 日志包含漏洞&#xff1a; 操作原理 包含漏洞读取文件 文件包含漏洞远程代码执行漏洞: 远程文件包含…...

Java 大视界 -- Java 大数据在智能医疗影像诊断中的应用(72)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖 一、…...

Web - CSS3浮动定位与背景样式

概述 这篇文章主要介绍了 CSS3 中的浮动定位、背景样式、变形效果等内容。包括 BFC 规范与创建方法、浮动的功能与使用要点、定位的多种方式及特点、边框与圆角的设置、背景的颜色、图片等属性、多种变形效果及 3D 旋转等&#xff0c;还提到了浏览器私有前缀。 BFC规范与浏览…...

ConcurrentHashMap线程安全:分段锁 到 synchronized + CAS

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解ConcurrentHashMap为什么线程安全&#xff1b;ConcurrentHashMap的具体细节还需要进一步研究 目录 ConcurrentHashMap介绍JDK7的分段锁实现JDK8的synchr…...

系统学习算法:专题九 穷举vs暴搜vs深搜vs回溯vs剪枝

其中标题的深搜&#xff0c;回溯&#xff0c;剪枝我们之前专题都已经有过学习和了解&#xff0c;这里多了两个穷举和暴搜&#xff0c;其实意思都差不多&#xff0c;穷举就是穷尽力气将所有情况都列举出来&#xff0c;暴搜就是暴力地去一个一个情况搜索&#xff0c;所以就是全部…...

解决 Pandas DataFrame 索引错误:KeyError:0

在使用 Pandas 处理数据时&#xff0c;KeyError 是一个常见的问题&#xff0c;尤其是在尝试通过索引访问数据时。本文将通过一个实际案例&#xff08;使用SKLearn中的MINIST数据集为例&#xff09;&#xff0c;详细分析 KeyError 的原因&#xff0c;并提供解决方法。 1 问题背…...

deepseek的对话风格

概述 deepseek的对话风格&#xff0c;比一般的模型的回答多了思考过程&#xff0c;这是它比较可爱的地方&#xff0c;模型的回答有了思考过程&#xff0c;对用户而言大模型的回答不完全是一个黑盒。 deepseek的对话风格 train_prompt_style """Below is an…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...