当前位置: 首页 > news >正文

使用LightGlue进行图像配准并提取图像重叠区域

发表日期:2023年6月23日
项目地址:https://github.com/cvg/LightGlue + https://github.com/cvg/glue-factory/

LightGlue是一个在精度上媲美Superglue,但在速度上比Superglue快一倍的模型。通过博主实测,LightGlue的配准效果比Superglue好,LightGlue配准后的结果错误点更少,同时提取的重叠区域更精准。

基于Superpoint+Superglue 提取重叠区域的代码可以参考 https://blog.csdn.net/a486259/article/details/129093084

1、lightglue与superglue的对比

lightglue与superglue相比在同样的精度下,速度要快3倍。
在这里插入图片描述
lightglue的结构设计如下,是通过组层移除低匹配度点的策略进行预测
在这里插入图片描述

在多个任务中对比,可以发现lightglue比superglue略胜一筹,占微弱优势
在这里插入图片描述
但在速度上,明显可以看到Lightglue明显比superglue快不少,能减少50%的耗时。
在这里插入图片描述

2、lightglue使用效果

下载LightGlue项目
或者执行

git clone https://github.com/cvg/LightGlue.git && cd LightGlue
python -m pip install -e .

执行以下代码进行配准尝试

# If we are on colab: this clones the repo and installs the dependencies
from pathlib import Path# if "LightGlue" not in Path.cwd().name :
#     !git clone --quiet https://github.com/cvg/LightGlue/
#     %cd LightGlue
#     !pip install --progress-bar off --quiet -e .from lightglue import LightGlue, SuperPoint, DISK
from lightglue.utils import load_image, rbd
from lightglue import viz2d
import torchtorch.set_grad_enabled(False)
images = Path("../assets")device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 'mps', 'cpu'
#官方默认是2048个点
extractor = SuperPoint(max_num_keypoints=700).eval().to(device)  # load the extractor
matcher = LightGlue(features="superpoint").eval().to(device)image0 = load_image(images / "b1.png")
image1 = load_image(images / "b2.png")feats0 = extractor.extract(image0.to(device))
feats1 = extractor.extract(image1.to(device))
matches01 = matcher({"image0": feats0, "image1": feats1})
feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]
]  # remove batch dimensionkpts0, kpts1, matches = feats0["keypoints"], feats1["keypoints"], matches01["matches"]
m_kpts0, m_kpts1 = kpts0[matches[..., 0]], kpts1[matches[..., 1]]axes = viz2d.plot_images([image0, image1])
viz2d.plot_matches(m_kpts0, m_kpts1, color="lime", lw=0.2)
viz2d.add_text(0, f'Stop after {matches01["stop"]} layers', fs=20)kpc0, kpc1 = viz2d.cm_prune(matches01["prune0"]), viz2d.cm_prune(matches01["prune1"])
viz2d.plot_images([image0, image1])
viz2d.plot_keypoints([kpts0, kpts1], colors=[kpc0, kpc1], ps=10)

执行效果如下所示,比superglue要好很多,基本上看不到错误匹配的点。superglue配准具体细节可以查看链接
在这里插入图片描述
superglue的配置效果如下所示,存在不少错误的点。
在这里插入图片描述

3、提取重叠区域

在步骤二的结果中,基于以下代码可以实现重叠区域的提取

import cv2
import numpy as np
from imgutils import myimshowsCL,tensor2img
def getGoodMatchPoint(mkpts0, mkpts1, confidence,  match_threshold:float=0.003):n = min(mkpts0.size(0), mkpts1.size(0))srcImage1_matchedKPs, srcImage2_matchedKPs=[],[]if (match_threshold > 1 or match_threshold < 0):print("match_threshold error!")for i in range(n):kp0 = mkpts0[i]kp1 = mkpts1[i]pt0=(kp0[0].item(),kp0[1].item());pt1=(kp1[0].item(),kp1[1].item());c = confidence[i].item();if (c > match_threshold):srcImage1_matchedKPs.append(pt0);srcImage2_matchedKPs.append(pt1);return np.array(srcImage1_matchedKPs),np.array(srcImage2_matchedKPs)
mkpts0, mkpts1 = m_kpts0, m_kpts1
confidence=matches01['scores']
im_dst,im_res=tensor2img(image0), tensor2img(image1)pts_src, pts_dst=getGoodMatchPoint(mkpts0, mkpts1, confidence)h1, status = cv2.findHomography(pts_src, pts_dst, cv2.RANSAC, 1)
im_out1 = cv2.warpPerspective(im_dst, h1, (im_dst.shape[1],im_dst.shape[0]))myimshowsCL([im_dst,im_res,im_out1],titles=["im_dst","im_res","overlap"],rows=1,cols=3, size=6)

其中myimshowsCL,tensor2img等函数代码来自于 https://hpg123.blog.csdn.net/article/details/129093084

提取的重叠区域如下所示
在这里插入图片描述
基于superglue配准后提取的重叠区域如图1所示,可以看到有3处不如LightGlue(关于地球仪上的误差,可能不算;但另两处特别明显)
在这里插入图片描述

相关文章:

使用LightGlue进行图像配准并提取图像重叠区域

发表日期&#xff1a;2023年6月23日 项目地址&#xff1a;https://github.com/cvg/LightGlue https://github.com/cvg/glue-factory/ LightGlue是一个在精度上媲美Superglue&#xff0c;但在速度上比Superglue快一倍的模型。通过博主实测&#xff0c;LightGlue的配准效果比Su…...

DeepSeek-R1:开源机器人智能控制系统的革命性突破

目录 引言 一、DeepSeek-R1 的概述 1.1 什么是 DeepSeek-R1&#xff1f; 1.2 DeepSeek-R1 的定位 二、DeepSeek-R1 的核心特性 2.1 实时控制能力 2.2 多传感器融合 2.3 路径规划与导航 2.4 人工智能集成 2.5 开源与模块化设计 2.6 跨平台支持 三、DeepSeek-R1 的技术…...

第二十二章 MySQL锁之全局锁

目录 一、锁概述 二、全局锁概念 三、全局锁使用 四、全局锁特点 五、不加锁一致性数据备份 5.1. 实现方式 5.2. 优点和缺点 一、锁概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#x…...

pytorch实现简单的情感分析算法

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 在PyTorch中实现中文情感分析算法通常涉及以下几个步骤&#xff1a;数据预处理、模型定义、训练和评估。下面是一个简单的实现示例&#xff0c;使用LSTM模型进行中文情感分析。 1. 数据预处理 首先&#xff0c;我…...

Win11关闭登录密码?

或者使用winR快捷键, 输入&#xff1a; netplwiz 进入页面后&#xff0c;按照提示按ctrlaltdel键更改密码。 在跳转页面点击更改密码。 输入原密码后&#xff0c;将新密码设置为空即可。 Win11的两个实用技巧系列之如何关闭登录密码?_win11关闭密码还是要输入-CSDN博客...

e2studio开发RA4M2(6)----GPIO外部中断(IRQ)配置

e2studio开发RA4M2.6--GPIO外部中断&#xff08;IRQ&#xff09;配置 概述视频教学样品申请硬件准备参考程序源码下载新建工程工程模板保存工程路径芯片配置工程模板选择时钟设置SWD调试口设置GPIO口配置按键中断配置中断回调函数主程序 概述 GPIO&#xff08;通用输入/输出&a…...

DeepSeek 阐述 2025年前端发展趋势

预测2025年前端的发展趋势。首先&#xff0c;我需要考虑当前的前端 技术发展情况&#xff0c;以及近几年的变化趋势。比如&#xff0c;框架方面&#xff0c;React、Vue、Angular这些主流框架的更新方向和社区活跃度。可能用户想知道未来哪些技术会更流行&#xff0c;或者需要学…...

linux内核源代码中__init的作用?

在 Linux 内核源代码中&#xff0c;__init是一个特殊的宏&#xff0c;用于标记在内核初始化阶段使用的变量或函数。这个宏的作用是告诉内核编译器和链接器&#xff0c;被标记的变量或函数只在内核的初始化阶段使用&#xff0c;在系统启动完成后就不再需要了。因此&#xff0c;这…...

计算机从何而来?计算技术将向何处发展?

计算机的前生&#xff1a;机械计算工具的演进 算盘是计算机的起点&#xff0c;它其实是一台“机械式半自动化运算器”。打算盘的“口诀”其实就是它的编程语言&#xff0c;算盘珠就是它的存储器。 第二阶段是可以做四则运算的加法器、乘法器。1642年&#xff0c;法国数学家帕斯…...

浏览器的通信能力

浏览器的通信能力 用户代理 浏览器可以代替用户完成http请求&#xff0c;代替用户解析响应结果&#xff0c;所以我们称之为&#xff1a; 用户代理 user agent 在网络层面&#xff0c;对于前端开发者&#xff0c;必须要知道浏览器拥有的两大核心能力&#xff1a; 自动发出请…...

11. 9 构建生产级聊天对话记忆系统:从架构设计到性能优化的全链路指南

构建生产级聊天对话记忆系统:从架构设计到性能优化的全链路指南 关键词: 聊天对话记忆系统、多用户会话管理、LangChain生产部署、Redis记忆存储、高并发对话系统 一、服务级聊天记忆系统核心需求 多用户隔离:支持同时处理数千个独立对话持久化存储:对话历史不因服务重启丢…...

25.02.04 《CLR via C#》 笔记14

第二十一章 托管堆和垃圾回收 内存分配过程 CLR维护一个“下一次分配指针”&#xff08;NextObjPtr&#xff09;&#xff0c;指向当前托管堆中第一个可用的内存地址 计算类型所需的字节数&#xff0c;加上对象开销&#xff08;类型对象指针、同步块索引&#xff09;所需字节数…...

半导体器件与物理篇5 mosfet及相关器件

认识mos二极管 MOS二极管是研究半导体表面特性最有用的器件之一。MOS二极管可作为存储电容器&#xff0c;并且是电荷耦合器件(CCD)的基本结构单元。 MOS二极管结构的重要参数包括&#xff1a;氧化层厚度d&#xff1b;施加于金属平板上的电压V&#xff08;正偏压时V为正&#x…...

Hugging Face GGUF 模型可视化

Hugging Face GGUF 模型可视化 1. Finding GGUF files (检索 GGUF 模型)2. Viewer for metadata & tensors info (可视化 GGUF 模型)References 无知小儿&#xff0c;仙家雄霸天下&#xff0c;依附强者才是唯一的出路。否则天地虽大&#xff0c;也让你们无路可走&#xff0…...

PVE纵览-掌握 PVE USB 直通:让虚拟机与物理设备无缝连接

PVE纵览-掌握 PVE USB 直通&#xff1a;让虚拟机与物理设备无缝连接 文章目录 PVE纵览-掌握 PVE USB 直通&#xff1a;让虚拟机与物理设备无缝连接摘要前提条件步骤一&#xff1a;识别 USB 设备步骤二&#xff1a;编辑虚拟机配置步骤三&#xff1a;重启虚拟机注意事项其他配置选…...

关于系统重构实践的一些思考与总结

文章目录 一、前言二、系统重构的范式1.明确目标和背景2.兼容屏蔽对上层的影响3.设计灰度迁移方案3.1 灰度策略3.2 灰度过程设计3.2.1 case1 业务逻辑变更3.2.2 case2 底层数据变更&#xff08;数据平滑迁移&#xff09;3.2.3 case3 在途新旧流程兼容3.2.4 case4 接口变更3.2.5…...

DeepSeek:智能时代的AI利器及其应用前景

1.DeepSeek是什么&#xff1f; DeepSeek是一款基于人工智能技术的工具&#xff0c;旨在帮助用户高效处理和分析数据、生成内容、优化工作流程等。无论是数据分析、自然语言处理&#xff0c;还是自动化任务&#xff0c;DeepSeek都能提供强大的支持。其核心技术涵盖了机器学习、深…...

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程

超详细UE4(虚幻4)第一人称射击(FPS)游戏制作教程 引言 在游戏开发领域,第一人称射击(FPS)游戏一直是最受欢迎的类型之一。从经典的《反恐精英》(CS)到现代的《使命召唤》(Call of Duty),FPS游戏凭借其紧张刺激的游戏体验和高度沉浸感,吸引了无数玩家。如果你是一…...

电商项目高级篇09-检索服务

电商项目高级篇09-检索服务 1、环境搭建1.1、前端静态文件准备1.2、search服务引入模版引擎1.3、index.html页面复制到templates文件夹下1.4、模仿product项目&#xff0c;引入名称空间1.5、动静分离&#xff0c;静态资源路径位置替换1.6、将1.1的静态资源放到nginx目录下1.7、…...

【网络协议大花园】应用层 http协议的使用小技巧,用好了都不用加班,效率翻两倍(下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...