当前位置: 首页 > news >正文

剑指 Offer II 014. 字符串中的变位词


comments: true
edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20014.%20%E5%AD%97%E7%AC%A6%E4%B8%B2%E4%B8%AD%E7%9A%84%E5%8F%98%E4%BD%8D%E8%AF%8D/README.md

剑指 Offer II 014. 字符串中的变位词

题目描述

给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的某个变位词。

换句话说,第一个字符串的排列之一是第二个字符串的 子串

 

示例 1:

输入: s1 = "ab" s2 = "eidbaooo"
输出: True
解释: s2 包含 s1 的排列之一 ("ba").

示例 2:

输入: s1= "ab" s2 = "eidboaoo"
输出: False

 

提示:

  • 1 <= s1.length, s2.length <= 104
  • s1s2 仅包含小写字母

 

注意:本题与主站 567 题相同: https://leetcode.cn/problems/permutation-in-string/

解法

方法一:滑动窗口

不妨记字符串 s 1 s1 s1 的长度为 m m m,字符串 s 2 s2 s2 的长度为 n n n

我们观察发现,题目实际上等价于判断字符串 s 2 s2 s2 中是否存在窗口大小为 m m m,且窗口内的字符及其个数与字符串 s 1 s1 s1 相同的子串。

因此,我们先用哈希表或数组 c n t 1 cnt1 cnt1 统计字符串 s 1 s1 s1 中每个字符出现的次数,然后遍历字符串 s 2 s2 s2,维护一个窗口大小为 m m m 的滑动窗口,用哈希表或数组 c n t 2 cnt2 cnt2 统计窗口内每个字符出现的次数,当 c n t 1 = c n t 2 cnt1 = cnt2 cnt1=cnt2 时,说明窗口内的字符及其个数与字符串 s 1 s1 s1 相同,返回 true 即可。

否则,遍历结束后,返回 false

时间复杂度 ( m + n × ∣ Σ ∣ ) (m + n \times |\Sigma|) (m+n×∣Σ∣),空间复杂度 O ( ∣ Σ ∣ ) O(|\Sigma|) O(∣Σ∣)。其中 m m m n n n 分别为字符串 s 1 s1 s1 s 2 s2 s2 的长度;而 ∣ Σ ∣ |\Sigma| ∣Σ∣ 为字符集的大小,本题中 ∣ Σ ∣ = 26 |\Sigma|=26 ∣Σ∣=26

Python3
class Solution:def checkInclusion(self, s1: str, s2: str) -> bool:m, n = len(s1), len(s2)if m > n:return Falsecnt1 = Counter(s1)#前m字符cnt2 = Counter(s2[:m])if cnt1 == cnt2:return True#定长窗口for i in range(m, n):cnt2[s2[i]] += 1cnt2[s2[i - m]] -= 1if cnt1 == cnt2:return Truereturn False
Java
class Solution {public boolean checkInclusion(String s1, String s2) {int m = s1.length();int n = s2.length();if (m > n) {return false;}int[] cnt1 = new int[26];int[] cnt2 = new int[26];for (int i = 0; i < m; ++i) {++cnt1[s1.charAt(i) - 'a'];++cnt2[s2.charAt(i) - 'a'];}if (Arrays.equals(cnt1, cnt2)) {return true;}for (int i = m; i < n; ++i) {++cnt2[s2.charAt(i) - 'a'];--cnt2[s2.charAt(i - m) - 'a'];if (Arrays.equals(cnt1, cnt2)) {return true;}}return false;}
}
C++
class Solution {
public:bool checkInclusion(string s1, string s2) {int m = s1.size(), n = s2.size();if (m > n) {return false;}vector<int> cnt1(26), cnt2(26);for (int i = 0; i < m; ++i) {++cnt1[s1[i] - 'a'];++cnt2[s2[i] - 'a'];}if (cnt1 == cnt2) {return true;}for (int i = m; i < n; ++i) {++cnt2[s2[i] - 'a'];--cnt2[s2[i - m] - 'a'];if (cnt1 == cnt2) {return true;}}return false;}
};
Go
func checkInclusion(s1 string, s2 string) bool {m, n := len(s1), len(s2)if m > n {return false}var cnt1, cnt2 [26]intfor i := 0; i < m; i++ {cnt1[s1[i]-'a']++cnt2[s2[i]-'a']++}if cnt1 == cnt2 {return true}for i := m; i < n; i++ {cnt2[s2[i]-'a']++cnt2[s2[i-m]-'a']--if cnt1 == cnt2 {return true}}return false
}
TypeScript
function checkInclusion(s1: string, s2: string): boolean {const m = s1.length;const n = s2.length;if (m > n) {return false;}const cnt1 = new Array(26).fill(0);const cnt2 = new Array(26).fill(0);for (let i = 0; i < m; ++i) {++cnt1[s1[i].charCodeAt(0) - 'a'.charCodeAt(0)];++cnt2[s2[i].charCodeAt(0) - 'a'.charCodeAt(0)];}if (cnt1.toString() === cnt2.toString()) {return true;}for (let i = m; i < n; ++i) {++cnt2[s2[i].charCodeAt(0) - 'a'.charCodeAt(0)];--cnt2[s2[i - m].charCodeAt(0) - 'a'.charCodeAt(0)];if (cnt1.toString() === cnt2.toString()) {return true;}}return false;
}

方法二:滑动窗口优化

在方法一中,我们每次加入和移除一个字符时,都需要比较两个哈希表或数组,时间复杂度较高。我们可以维护一个变量 d i f f diff diff,表示两个大小为 m m m 的字符串中,有多少种 字符出现的个数 不同。当 d i f f = 0 diff=0 diff=0 时,说明两个字符串中的字符个数相同。

时间复杂度 O ( m + n + ∣ Σ ∣ ) O(m + n + |\Sigma|) O(m+n+∣Σ∣),空间复杂度 O ( ∣ Σ ∣ ) O(|\Sigma|) O(∣Σ∣)。其中 m m m n n n 分别为字符串 s 1 s1 s1 s 2 s2 s2 的长度;而 ∣ Σ ∣ |\Sigma| ∣Σ∣ 为字符集的大小,本题中 ∣ Σ ∣ = 26 |\Sigma|=26 ∣Σ∣=26

Python3
class Solution:def checkInclusion(self, s1: str, s2: str) -> bool:m,n=len(s1),len(s2)if m>n:return False#初始化m窗口cnt=Counter()for a,b in zip(s1,s2[:m]):#例如,如果s1有字符a出现两次,s2前m个字符中的a出现一次,那么cnt[a]的值会是-1#(因为从s1的角度,它应该出现两次,而s2中出现一次,所以差异是-1)。cnt[a]-=1 #用s2去满足缺失cnt[b]+=1diff=sum(v!=0 for v in cnt.values()) if diff==0:return True #说明s2前m字符含字串#滑动定长窗口for i in range(m,n):a,b=s2[i-m],s2[i] #待删,待新增#根据移动之前cnt的情况,判断对diff的影响if cnt[a]==0:diff+=1if cnt[b]==0:diff+=1cnt[a]-=1cnt[b]+=1#根据移动之后cnt的情况,判断对diff的影响if cnt[a]==0:diff-=1if cnt[b]==0:diff-=1if diff==0:return Truereturn False
Java
class Solution {public boolean checkInclusion(String s1, String s2) {int m = s1.length();int n = s2.length();if (m > n) {return false;}int[] cnt = new int[26];for (int i = 0; i < m; ++i) {--cnt[s1.charAt(i) - 'a'];++cnt[s2.charAt(i) - 'a'];}int diff = 0;for (int x : cnt) {if (x != 0) {++diff;}}if (diff == 0) {return true;}for (int i = m; i < n; ++i) {int a = s2.charAt(i - m) - 'a';int b = s2.charAt(i) - 'a';if (cnt[a] == 0) {++diff;}--cnt[a];if (cnt[a] == 0) {--diff;}if (cnt[b] == 0) {++diff;}++cnt[b];if (cnt[b] == 0) {--diff;}if (diff == 0) {return true;}}return false;}
}
C++
class Solution {
public:bool checkInclusion(string s1, string s2) {int m = s1.size(), n = s2.size();if (m > n) {return false;}vector<int> cnt(26);for (int i = 0; i < m; ++i) {--cnt[s1[i] - 'a'];++cnt[s2[i] - 'a'];}int diff = 0;for (int x : cnt) {if (x != 0) {++diff;}}if (diff == 0) {return true;}for (int i = m; i < n; ++i) {int a = s2[i - m] - 'a';int b = s2[i] - 'a';if (cnt[a] == 0) {++diff;}--cnt[a];if (cnt[a] == 0) {--diff;}if (cnt[b] == 0) {++diff;}++cnt[b];if (cnt[b] == 0) {--diff;}if (diff == 0) {return true;}}return false;}
};
Go
func checkInclusion(s1 string, s2 string) bool {m, n := len(s1), len(s2)if m > n {return false}cnt := [26]int{}for i := 0; i < m; i++ {cnt[s1[i]-'a']--cnt[s2[i]-'a']++}diff := 0for _, x := range cnt {if x != 0 {diff++}}if diff == 0 {return true}for i := m; i < n; i++ {a, b := s2[i-m]-'a', s2[i]-'a'if cnt[a] == 0 {diff++}cnt[a]--if cnt[a] == 0 {diff--}if cnt[b] == 0 {diff++}cnt[b]++if cnt[b] == 0 {diff--}if diff == 0 {return true}}return false
}
TypeScript
function checkInclusion(s1: string, s2: string): boolean {const m = s1.length;const n = s2.length;if (m > n) {return false;}const cnt: number[] = new Array(26).fill(0);for (let i = 0; i < m; ++i) {--cnt[s1[i].charCodeAt(0) - 'a'.charCodeAt(0)];++cnt[s2[i].charCodeAt(0) - 'a'.charCodeAt(0)];}let diff = 0;for (const x of cnt) {if (x !== 0) {++diff;}}if (diff === 0) {return true;}for (let i = m; i < n; ++i) {const a = s2[i - m].charCodeAt(0) - 'a'.charCodeAt(0);const b = s2[i].charCodeAt(0) - 'a'.charCodeAt(0);if (cnt[a] === 0) {++diff;}if (--cnt[a] === 0) {--diff;}if (cnt[b] === 0) {++diff;}if (++cnt[b] === 0) {--diff;}if (diff === 0) {return true;}}return false;
}
Swift
class Solution {func checkInclusion(_ s1: String, _ s2: String) -> Bool {let m = s1.countlet n = s2.countif m > n {return false}var cnt1 = [Int](repeating: 0, count: 26)var cnt2 = [Int](repeating: 0, count: 26)let aAscii = Character("a").asciiValue!for i in 0..<m {cnt1[Int(s1[s1.index(s1.startIndex, offsetBy: i)].asciiValue! - aAscii)] += 1cnt2[Int(s2[s2.index(s2.startIndex, offsetBy: i)].asciiValue! - aAscii)] += 1}if cnt1 == cnt2 {return true}for i in m..<n {cnt2[Int(s2[s2.index(s2.startIndex, offsetBy: i)].asciiValue! - aAscii)] += 1cnt2[Int(s2[s2.index(s2.startIndex, offsetBy: i - m)].asciiValue! - aAscii)] -= 1if cnt1 == cnt2 {return true}}return false}
}

相关文章:

剑指 Offer II 014. 字符串中的变位词

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20014.%20%E5%AD%97%E7%AC%A6%E4%B8%B2%E4%B8%AD%E7%9A%84%E5%8F%98%E4%BD%8D%E8%AF%8D/README.md 剑指 Offer II 014. 字符串中的变位词 题目描述 给定两个字符…...

富唯智能复合机器人拓展工业新维度

富唯智能复合机器人是富唯智能倾力打造的一款集高度自动化、智能化和多功能性于一体的机器人。它融合了机械、电子、计算机、传感器等多个领域的前沿技术&#xff0c;通过精密的算法和控制系统&#xff0c;实现了对复杂生产环境的快速适应和高效作业。 富唯智能复合机器人的特点…...

【大数据技术】搭建完全分布式高可用大数据集群(Scala+Spark)

搭建完全分布式高可用大数据集群(Scala+Spark) scala-2.13.16.tgzspark-3.5.4-bin-without-hadoop.tgz注:请在阅读本篇文章前,将以上资源下载下来。 写在前面 本文主要介绍搭建完全分布式高可用集群Spark的详细步骤。 注意: 统一约定将软件安装包存放于虚拟机的/softwa…...

solidity高阶 -- 调用接口合约

在区块链开发中&#xff0c;Solidity 是一种广泛使用的智能合约编程语言&#xff0c;而接口合约&#xff08;Interface&#xff09;是 Solidity 中一个非常重要的概念。它为智能合约之间的交互提供了一种标准化的方式&#xff0c;使得合约之间的调用更加灵活、安全且易于管理。…...

若依框架使用(低级)

克隆源码 浏览器搜索若依&#xff0c;选择 RuoYi-Vue RuoYi-Vue RuoYi-Vue 重要的事情说三遍&#xff0c;进入gitee 下面这个页面&#xff08;注意红色框起来的部分&#xff09; 进入Gitee进行下载 我下载的是最新的springboot3 下载好后我们可以选择一个文件夹&#xff0…...

找不到 MSVCP120.dll

msvcr120.dll msvcr120.dll 是 Microsoft Visual C Redistributable 的一部分&#xff0c;属于 Visual Studio 2013&#xff08;VC 12.0&#xff09;的运行时组件。它的重要性取决于你运行的应用程序是否需要它。 重要性 依赖库&#xff1a;如果某个程序是用 Visual Studio 2…...

AI软件栈:LLVM分析(三)

LLVM IR 文章目录 CFG线性IR 主要采用CFG与线性IR组合描述 CFG *关键在于基本块&#xff08;Basic Block&#xff09;的定义 线性IR *关键来自于SSA&#xff0c;单静态赋值...

openwebui入门

1 简介 ‌Open WebUI‌&#xff08;网址是openwebui.com&#xff09;是一个高度可扩展、功能强大且用户友好的自托管Web用户界面&#xff0c;专为完全离线操作设计&#xff0c;编程语言是python。它支持对接Ollama和OpenAI兼容的API的大模型。‌ Open WebUI‌在架构上是一种中…...

Spark--如何理解RDD

1、概念 rdd是对数据集的逻辑表示&#xff0c;本身并不存储数据&#xff0c;只是封装了计算逻辑&#xff0c;并构建执行计划&#xff0c;通过保存血缘关系来记录rdd的执行过程和历史&#xff08;当一个rdd需要重算时&#xff0c;系统会根据血缘关系追溯到最初的数据源&#xff…...

CTFSHOW-WEB入门-PHP特性89-100

题目&#xff1a;web 89 题目&#xff1a;解题思路&#xff1a;这道题目涉及了两个函数&#xff1a;preg_match&#xff08;&#xff09;和intval&#xff08;&#xff09;简要介绍一下两个函数 preg_match&#xff08;&#xff09;用于对字符串进行正则表达式的匹配&#xff0…...

[250204] Mistral Small 3:小巧、快速、强大 | asdf 0.16.0 发布:Golang 重写带来性能飞跃

目录 Mistral AI 发布开源模型 Mistral Small 3&#xff1a;小巧、快速、强大asdf 0.16.0 版本发布&#xff1a;Golang 重写带来性能飞跃&#xff01; Mistral AI 发布开源模型 Mistral Small 3&#xff1a;小巧、快速、强大 法国人工智能初创公司 Mistral AI 发布了最新的开源…...

PySpark学习笔记5-SparkSQL

sparkSql的数据抽象有两种。 一类是data set适用于java和Scala 一类是data frame适用于java&#xff0c;Scala&#xff0c;python 将r d d转换为data frame #方式一 df spark.createDataFrame(rdd,schema[name,age]) #方式二 schema Structtype(). add(id,integertype(),nu…...

windows版的docker如何使用宿主机的GPU

windows版的docker使用宿主机的GPU的命令 命令如下 docker run -it --nethost --gpus all --name 容器名 -e NVIDIA_DRIVER_CAPABILITIEScompute,utility -e NVIDIA_VISIBLE_DEVICESall 镜像名效果 (transformer) rootdocker-desktop:/# python Python 3.9.0 (default, Nov 15 …...

Python爬虫:1药城店铺爬虫(完整代码)

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…...

代码随想录算法训练营打卡第55天:并查集相关问题;

Java并查集的模板 //并查集模板 class DisJoint{private int[] father;public DisJoint(int N) {father new int[N];for (int i 0; i < N; i){father[i] i;}}public int find(int n) {return n father[n] ? n : (father[n] find(father[n]));}public void join (int …...

K8S学习笔记-------1.安装部署K8S集群环境

1.修改为root权限 #sudo su 2.修改主机名 #hostnamectl set-hostname k8s-master01 3.查看网络地址 sudo nano /etc/netplan/01-netcfg.yaml4.使网络配置修改生效 sudo netplan apply5.修改UUID&#xff08;某些虚拟机系统&#xff0c;需要设置才能生成UUID&#xff09;#…...

云原生周刊:K8s引领潮流

开源项目推荐 KWOK KWOK&#xff08;Kubernetes WithOut Kubelet&#xff09;是一个开源项目&#xff0c;旨在提供一个轻量级的 K8s 集群模拟环境&#xff0c;允许用户在不依赖真实节点的情况下&#xff0c;本地模拟整个 K8s 集群。它通过模拟 Kubelet 和其他集群组件的行为&…...

C_位运算符及其在单片机寄存器的操作

C语言的位运算符用于直接操作二进制位&#xff0c;本篇简单结束各个位运算符的作业及其在操作寄存器的应用场景。 一、位运算符的简单说明 1、按位与运算符&#xff08;&&#xff09; 功能&#xff1a;按位与运算符对两个操作数的每一位执行与操作。如果两个对应的二进制…...

【算法篇】贪心算法

目录 贪心算法 贪心算法实际应用 一&#xff0c;零钱找回问题 二&#xff0c;活动选择问题 三&#xff0c;分数背包问题 将数组和减半的最小操作次数 最大数 贪心算法 贪心算法&#xff0c;是一种在每一步选择中都采取当前状态下的最优策略&#xff0c;期望得到全局最优…...

Selenium 浏览器操作与使用技巧——详细解析(Java版)

目录 一、浏览器及窗口操作 二、键盘与鼠标操作 三、勾选复选框 四、多层框架/窗口定位 五、操作下拉框 六、上传文件操作 七、处理弹窗与 alert 八、处理动态元素 九、使用 Selenium 进行网站监控 前言 Selenium 是一款非常强大的 Web 自动化测试工具&#xff0c;能够…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...