当前位置: 首页 > news >正文

10. 神经网络(二.多层神经网络模型)

多层神经网络(Multi-Layer Neural Network),也称为深度神经网络(Deep Neural Network, DNN),是机器学习中一种重要的模型,能够通过多层次的非线性变换解决复杂的分类、回归和模式识别问题。以下是其详细介绍:


1. 基本概念

多层神经网络由多个层(Layer)堆叠而成,包括:

  • 输入层(Input Layer):接收原始数据(如图像像素、文本向量等)。

  • 隐藏层(Hidden Layers):介于输入层和输出层之间,负责特征提取和抽象。

  • 输出层(Output Layer):生成最终预测结果(如分类标签、回归值)。

每一层由多个神经元(Neuron)组成,神经元之间通过权重(Weight)连接,并通过激活函数(Activation Function)引入非线性。


2. 核心结构

(1)前向传播(Forward Propagation)

数据从输入层逐层传递到输出层:

  1. 输入数据 xx 经过线性变换(权重 WW 和偏置 bb)和非线性激活函数。

  2. 每层的输出公式:

    a(l)=f(W(l)a(l−1)+b(l))a(l)=f(W(l)a(l−1)+b(l))

    其中 f(⋅)f(⋅) 是激活函数,ll 表示层数。

(2)激活函数(Activation Function)
  • 作用:引入非线性,使网络能够学习复杂模式。

  • 常见类型

    • Sigmoid:将输入压缩到 (0,1),适用于二分类输出层。

    • ReLU(Rectified Linear Unit):f(x)=max⁡(0,x)f(x)=max(0,x),缓解梯度消失问题,广泛用于隐藏层。

    • Softmax:将输出转化为概率分布,适用于多分类输出层。

(3)反向传播(Backpropagation)

通过梯度下降优化权重:

  1. 计算损失函数(Loss Function):如均方误差(MSE)或交叉熵(Cross-Entropy)。

  2. 链式法则计算梯度:从输出层反向传播误差,调整每层的权重和偏置。

  3. 参数更新:使用优化器(如SGD、Adam)更新参数。


3. 多层神经网络的优点

  1. 特征自动学习:无需手动设计特征,隐藏层逐层提取高阶抽象特征。

  2. 强大的表达能力:理论上可以逼近任何连续函数(万能近似定理)。

  3. 适应复杂任务:如图像识别(CNN)、自然语言处理(RNN)、语音识别等。


4. 常见类型

  1. 全连接网络(Fully Connected Network, FCN)

    • 每层神经元与下一层全部连接,参数量大。

  2. 卷积神经网络(CNN)

    • 通过卷积核提取局部特征,适合图像数据。

  3. 循环神经网络(RNN)

    • 处理序列数据(如文本、时间序列),具有记忆能力。

  4. Transformer

    • 基于自注意力机制,擅长长距离依赖建模(如BERT、GPT)。


5. 训练中的挑战

  1. 梯度消失/爆炸

    • 深层网络中梯度可能指数级缩小或增大。

    • 解决方案:ReLU、Batch Normalization、残差连接(ResNet)。

  2. 过拟合

    • 模型在训练集表现好,但泛化能力差。

    • 解决方案:Dropout、正则化(L1/L2)、数据增强。

  3. 计算资源需求

    • 训练深层网络需要大量GPU算力和内存。


6. 应用场景

  • 计算机视觉:图像分类、目标检测(YOLO、ResNet)。

  • 自然语言处理:机器翻译(Transformer)、情感分析。

  • 推荐系统:用户行为预测。

  • 强化学习:游戏AI(AlphaGo)。

相关文章:

10. 神经网络(二.多层神经网络模型)

多层神经网络(Multi-Layer Neural Network),也称为深度神经网络(Deep Neural Network, DNN),是机器学习中一种重要的模型,能够通过多层次的非线性变换解决复杂的分类、回归和模式识别问题。以下…...

spark 性能调优 (一):执行计划

在 Spark 中,explain 函数用于提供数据框(DataFrame)或 SQL 查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解 Spark 是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。 1. 逻辑计划 (Logical…...

“卫星-无人机-地面”遥感数据快速使用及地物含量计算的实现方法

在与上千学员交流过程中,发现科研、生产和应用多源遥感数据时,能快速上手,发挥数据的时效性,尽快出创新性成果,是目前的学员最迫切的需求。特别是按照“遥感数据获取-处理-分析-计算-制图”全流程的答疑解惑&#xff0…...

杨氏数组中查找某一数值是否存在

判断数据是否存在于杨氏矩阵中 (小米真题) 题目:有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。 要求:时间复杂度小于O(N) …...

c语言对应汇编写法(以中微单片机举例)

芯片手册资料 1. 赋值语句 C语言: a 5; b a; 汇编: ; 立即数赋值 LDIA 05H ; ACC 5 LD R01,A ; R01 ACC(a5); 寄存器间赋值 LD A,R01 ; ACC R01(读取a的值) LD R02,A ; R02 ACC&…...

详解CSS `clear` 属性及其各个选项

详解CSS clear 属性及其各个选项 1. clear: left;示例代码 2. clear: right;示例代码 3. clear: both;示例代码 4. clear: none;示例代码 总结 在CSS布局中,clear 属性是一个非常重要的工具,特别是在处理浮动元素时。本文将详细解释 clear 属性及其各个选…...

算法设计与分析三级项目--管道铺设系统

摘 要 该项目使用c算法逻辑,开发环境为VS2022,旨在通过Prim算法优化建筑物间的连接路径,以支持管线铺设规划。可以读取文本文件中的建筑物名称和距离的信息,并计算出建筑物之间的最短连接路径和总路径长度,同时以利用…...

Page Assist - 本地Deepseek模型 Web UI 的安装和使用

Page Assist Page Assist是一个开源的Chrome扩展程序,为本地AI模型提供一个直观的交互界面。通过它可以在任何网页上打开侧边栏或Web UI,与自己的AI模型进行对话,获取智能辅助。这种设计不仅方便了用户随时调用AI的能力,还保护了…...

VMware Win10下载安装教程(超详细)

《网络安全自学教程》 从MSDN下载系统镜像,使用 VMware Workstation 17 Pro 安装 Windows 10 consumer家庭版 和 VMware Tools。 Win10下载安装 1、下载镜像2、创建虚拟机3、安装操作系统4、配置系统5、安装VMware Tools 1、下载镜像 到MSDN https://msdn.itellyou…...

DS目前曲线代替的网站汇总

DS目前还不稳定,好在国内外大厂平台都上线了,汇总如下: 秘塔搜索: https://metaso.cn 360纳米AI搜索: https://www.n.cn/ 硅基流动: https://cloud.siliconflow.cn/i/snHnLED8 字节跳动火山引擎&#xf…...

具有HiLo注意力的快速视觉Transformer

摘要 https://arxiv.org/pdf/2205.13213 视觉Transformer(ViTs)在计算机视觉领域引发了最新且最重要的突破。其高效设计大多以计算复杂度的间接指标,即浮点运算数(FLOPs)为指导,然而,该指标与吞吐量等直接指标之间存在明显差距。因此,我们建议使用目标平台上的直接速度…...

《AI “造脸术”:生成对抗网络打造超真实虚拟人脸》

在科技飞速发展的当下,人工智能的浪潮席卷而来,其中生成对抗网络(GANs)技术以其独特的魅力,成为了生成高度真实感虚拟人脸的强大引擎。无论是影视制作中虚拟角色的塑造,还是游戏领域中多样化角色形象的构建…...

2025.2.6总结

今天想聊聊工作。 1.到底什么是工作? 个人理解,工作就是在规定的时间下,高质量的完成领导交代的任务。刚开始工作时,我只懂一味的埋头苦干,能干多少干多少,最后结果怎么样我也不是很在乎。后面&#xff0…...

RK3576——USB3.2 OTG无法识别到USB设备

问题:使用硬盘接入到OTG接口无热插拔信息,接入DP显示屏无法正常识别到显示设备,但是能通过RKDdevTool工具烧录系统。 问题分析:由于热插拔功能实现是靠HUSB311芯片完成的,因此需要先确保HUSB311芯片驱动正常工作。 1. …...

低代码系统-插件功能分析( 某道云)

本文主要把其的插件进行了简单分析,不做业务上的梳理,不做推荐。 可大致分为: 群机器人 信息查询 智能识别 实名验证类 数据库类 通知类 通知类 aPaas增强 考勤同步 财务类 类别 插件名称 功能简介 群机器人类 某钉机器人 即在表单处完…...

如何在 FastAPI 中使用本地资源自定义 Swagger UI

要自定义 FastAPI 中的 Swagger UI,且使用本地资源来代替 CDN。只是需要稍微修改一下。 修改后的代码: 步骤: 挂载本地静态文件目录:我们将本地的 Swagger UI 资源文件(如 .js, .css, favicon.png 等)放…...

wxWidgets生成HTML文件,带图片转base64数据

编译环境大家可以看我之前的文章,CodeBlocks + msys2 + wx3.2,win10 这里功能就是生成HTML文件,没用HTML库,因为是自己固定的格式,图片是一个vector,可以动态改变数量的。 效果如下: #include <wx/string.h> #include <wx/file.h> #include <wx/ima…...

基于ArcGIS的SWAT模型+CENTURY模型模拟流域生态系统水-碳-氮耦合过程研究

流域是一个相对独立的自然地理单元&#xff0c;它是以水系为纽带&#xff0c;将系统内各自然地理要素连结成一个不可分割的整体。碳和氮是陆地生态系统中最重要的两种化学元素&#xff0c;而在流域系统内&#xff0c;水-碳-氮是相互联动、不可分割的耦合体。随着流域内人类活动…...

一键掌握多平台短视频矩阵营销/源码部署

短视频矩阵系统的介绍与应用 随着数字化营销策略的不断演进&#xff0c;传统的短视频矩阵操作方法可能已显陈旧。为此&#xff0c;一款全新的短视频矩阵系统应运而生&#xff0c;它通过整合多个社交媒体账户、创建多样化的任务、运用先进的智能视频编辑工具、实现多平台内容的…...

2.Python基础知识:注释、变量以及数据类型、标识符和关键字、输入函数、输出函数、运算符、程序类型转换

1. 注释 注释是用来解释代码&#xff0c;增强代码可读性的部分。在 Python 中&#xff0c;注释分为单行注释和多行注释。 单行注释&#xff1a;以 # 开头&#xff0c;后面的内容都被视为注释。 # 这是一个单行注释 print("Hello, World!") # 输出 "Hello, Wor…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...