解决whisper 本地运行时GPU 利用率不高的问题

我在windows 环境下本地运行whisper 模型,使用的是nivdia RTX4070 显卡,结果发现GPU 的利用率只有2% 。使用
import torch
print(torch.cuda.is_available())
返回TRUE。表示我的cuda 是可用的。
最后在github 的下列网页上找到了问题
极低的 GPU 利用率 #140
最关键的是
1 .运行之前,清除GPU 缓存
torch.cuda.empty_cache()
2 使用小的whisper 模型,我使用
model =load_model("base").to("cuda")
3 最关键的是 在model.transcribe的参数中设置 beam_size = 5,一下子GPU 的利用率到了20%,当beam_size = 8 时,GPU 利用率可达30%左右。
model.transcribe(arr,language="en", prompt=prompt,fp16 =False,beam_size = 8,verbose =True,condition_on_previous_text =False)["text"]
下面是我完整的测试程序
import os
import sys
import os.path
import openai
#from dotenv import load_dotenv
import torch
#import whisper
from whisper import load_model
import numpy as np
#from pyannote.audio import Pipeline
from pydub import AudioSegment
#os.environ['OPENAI_API_KEY'] ="sk-ZqGx7uD7sHMyITyIrxFDjbvVEAi84izUGGRwN23N9NbnqTbL"
#os.environ['OPENAI_BASE_URL'] ="https://api.chatanywhere.tech/v1"
print(torch.cuda.is_available())
torch.cuda.empty_cache()
model =load_model("base").to("cuda")
audio = AudioSegment.from_mp3("daily.mp3") #sys.argv[1]segment_length = 25 * 60
duration = audio.duration_seconds
print('Segment length: %d seconds' % segment_length)
print('Duration: %d seconds' % duration)segment_filename = os.path.basename("daily.mp3") #sys.argv[1]
segment_filename = os.path.splitext(segment_filename)[0]
number_of_segments = int(duration / segment_length)
segment_start = 0
segment_end = segment_length * 1000
enumerate = 1
prompt = ""for i in range(number_of_segments):audio_segment = audio[segment_start:segment_end]exported_file = './tmp/' + segment_filename + '-' + str(enumerate) + '.mp3'audio_segment.export(exported_file, format="mp3")print('Exported segment %d of %d' % (enumerate, number_of_segments))#f = open(exported_file, "rb")#audio_segment = audio[segment_start:segment_end]if audio_segment.frame_rate != 16000: # 16 kHzaudio_segment = audio_segment.set_frame_rate(16000)if audio_segment.sample_width != 2: # int16audio_segment = audio_segment.set_sample_width(2)if audio_segment.channels != 1: # monoaudio_segment = audio_segment.set_channels(1) arr = np.array(audio_segment.get_array_of_samples())arr = arr.astype(np.float32)/32768.0#beam_size = 5非常重要,=8 GPU 利用率30%左右data = model.transcribe(arr,language="en", prompt=prompt,fp16 =False,beam_size = 8,verbose =True,condition_on_previous_text =False)["text"]print('Transcribed segment %d of %d' % (enumerate, number_of_segments))f = open(os.path.join('./transcripts/', segment_filename + '.txt'), "a")f.write(data)f.close()prompt += datasegment_start += segment_length * 1000segment_end += segment_length * 1000enumerate += 1
beam_size到底是什么意思我并没有搞清楚
beam size(又名 beam width)控制生成输出时每个步骤中探索的路径数。这是个啥呀?
相关文章:
解决whisper 本地运行时GPU 利用率不高的问题
我在windows 环境下本地运行whisper 模型,使用的是nivdia RTX4070 显卡,结果发现GPU 的利用率只有2% 。使用 import torch print(torch.cuda.is_available()) 返回TRUE。表示我的cuda 是可用的。 最后在github 的下列网页上找到了问题 极低的 GPU 利…...
模拟实战-用CompletableFuture优化远程RPC调用
实战场景 这是广州某500-900人互联网厂的面试原题 手写并发优化解决思路 我们要调用对方的RPC接口,我们的RPC接口每调用一次对方都会阻塞50ms 但是我们的业务要批量调用RPC,例如我们要批量调用1k次,我们不可能在for循环里面写1k次远程调用…...
深入解析:Jsoup 库的多功能应用场景
Jsoup 是一个强大的 Java 库,主要用于解析和操作 HTML 文档。它不仅广泛应用于网络爬虫和数据抓取,还在网页内容分析、数据清洗与处理、自动化测试等多个领域有着广泛的应用。本文将详细介绍 Jsoup 库的多种用途,并提供具体的代码示例。 一、…...
Polardb三节点集群部署安装--附虚拟机
1. 架构 PolarDB-X 采用 Shared-nothing 与存储计算分离架构进行设计,系统由4个核心组件组成。 计算节点(CN, Compute Node) 计算节点是系统的入口,采用无状态设计,包括 SQL 解析器、优化器、执行器等模块。负责数据…...
Redis - 全局ID生成器 RedisIdWorker
文章目录 Redis - 全局ID生成器 RedisIdWorker一、引言二、实现原理三、代码实现代码说明 四、使用示例示例说明 五、总结 Redis - 全局ID生成器 RedisIdWorker 一、引言 在分布式系统中,生成全局唯一ID是一个常见的需求。传统的自增ID生成方式在分布式环境下容易出…...
【Vitest】单元测试
文章目录 测试:Vitest一、安装二、断言三、回调测试四、对象方法五、模拟第三库 测试:Vitest 一、安装 npm install vitest创建文件:example.test.ts 运行测试: npx vitest example二、断言 import { expect, test } from vi…...
达梦数据库从单主模式转换为主备模式
目录标题 达梦数据库单主转主备配置笔记前期准备服务器环境数据库安装磁盘空间 流程流程图说明基于脱机备份方式的单实例转主备流程图详细步骤说明 详细步骤1. 检查主库归档模式2. 配置主库配置文件dm.ini 文件dmmal.ini 文件dmarch.ini 文件 3. 备份主库数据库4. 备库配置新建…...
【Elasticsearch】nested聚合
在 Elasticsearch 中,嵌套聚合(nestedaggregation)的语法形式用于对嵌套字段(nestedfields)进行聚合操作。嵌套字段是 Elasticsearch 中的一种特殊字段类型,用于存储数组中的对象,这些对象需要独…...
虹科波形小课堂 | 三分钟掌握车辆相对压缩测试!不拆发动机、不测缸压就能判断故障缸!
不拆发动机、不测缸压,只测个电流也能知道哪个缸压缩有问题?没错!做个相对压缩测试,测下起动电流就行,简单又实用!今天,从原理到方法,几分钟教会你! 我们都知道…...
【玩转全栈】--创建一个自己的vue项目
目录 vue介绍 创建vue项目 vue页面介绍 element-plus组件库 启动项目 vue介绍 Vue.js 是一款轻量级、易于上手的前端 JavaScript 框架,旨在简化用户界面的开发。它采用了响应式数据绑定和组件化的设计理念,使得开发者可以通过声明式的方式轻松管理数据和…...
基于 Spring Cloud + Spring AI + VUE 的知识助理平台介绍以及问题
前言(一些废话) 在看这篇文章的各位大佬,感谢你们留出几分钟时间,来看这个产品介绍,其实重点说实话,不是这个产品怎么样。而是在最后有一个郁结在心里的几个问题,希望大佬们能给出一些建议。万…...
< 自用文儿 > 下载 MaxMind GeoIP Databases 对攻击的 IP 做 地理分析
起因 两个 VPM/VPS,安装了 fail2ban 去拦截密码穷举攻击。每天的记录都在增长,以前复制屏幕输出就行,一屏的内容还容易粘贴出来的。昨天已经过 500 条,好奇 fail2ban 是如何存储这些内容的?就发现它在使用 SQLite3 数…...
前端知识速记:重绘和回流
前端知识速记:重绘和回流 一、什么是重绘与回流 1. 重绘(Repaint) 重绘是指当元素的外观发生变化时,浏览器需要重新绘制这些元素。由于这些操作不会改变元素占据的空间,因此不需要进行回流。常见的重绘操作包括&…...
webrtc peerconnection_client peerconnection_server 连接失败问题解决 win10 win11
0 常见问题 (1) webrtc peerconnection_client 连接 peerconnection_server 无连接列表 (2)连接导致崩溃debug状态下因为这个断言 RTC_DCHECK_RUN_ON(&capture_checker_); 1 在 peerconnection\client\main.cc 当中 定义类 class CustomSock…...
【C++】STL——list的使用与底层实现
目录 💕1.带头双向链表List 💕2.list用法介绍 💕3.list的初始化 💕4.size函数与resize函数 💕5.empty函数 💕6.front函数与back函数 💕7.push_front,push_back,pop_front,pop_back函数…...
iOS 音频录制、播放与格式转换
iOS 音频录制、播放与格式转换:基于 AVFoundation 和 FFmpegKit 的实现 在 iOS 开发中,音频处理是一个非常常见的需求,比如录音、播放音频、音频格式转换等。本文将详细解读一段基于 AVFoundation 和 FFmpegKit 的代码,展示如何实现音频录制、播放以及 PCM 和 AAC 格式之间…...
【PyTorch】解决Boolean value of Tensor with more than one value is ambiguous报错
理解并避免 PyTorch 中的 “Boolean value of Tensor with more than one value is ambiguous” 错误 在深度学习和数据科学领域,PyTorch 是一个强大的工具,它允许我们以直观和灵活的方式处理张量(Tensor)。然而,即使…...
Jsoup库具体怎么用?
Jsoup 是一个非常强大的 Java 库,用于解析和操作 HTML 文档。它提供了丰富的功能,包括发送 HTTP 请求、解析 HTML 内容、提取数据、修改 HTML 元素等。以下将详细介绍 Jsoup 的基本用法和一些高级功能,帮助你更好地使用 Jsoup 进行网络爬虫开…...
python:如何播放 .spx 声音文件
.spx 是 Speex音频编解码器的文件扩展名,它是一种开源的、免费的音频编解码器,主要用于语音压缩和语音通信领域。spx 文件通常用于语音记录、VoIP应用、语音信箱等场景。 .mp3 是一种广泛使用的音频格式,它采用了有损压缩算法,可…...
HTML学习笔记(6)
利用dom操作实现,对一个表格的增删改查 代码如下: todolist.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, …...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
