当前位置: 首页 > news >正文

[论文笔记] Deepseek-R1R1-zero技术报告阅读

启发:

1、SFT&RL的训练数据使用CoT输出的格式,先思考再回答,大大提升模型的数学与推理能力。

2、RL训练使用群体相对策略优化(GRPO),奖励模型是规则驱动,准确性奖励和格式化奖励。

1. 总体概述

  • 背景与目标

    • 报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。

    • 介绍了两代模型:DeepSeek-R1-Zero(纯 RL,无 SFT 冷启动数据)和 DeepSeek-R1(在 RL 前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。

  • 核心思路

    • 直接在基础模型上应用大规模强化学习,利用规则设计的奖励机制(包括准确性奖励和格式奖励)激励生成长链思维(CoT)。

    • 通过拒绝采样和后续的监督微调,进一步改善模型输出的可读性和对齐人类偏好。

相关文章:

[论文笔记] Deepseek-R1R1-zero技术报告阅读

启发: 1、SFT&RL的训练数据使用CoT输出的格式,先思考再回答,大大提升模型的数学与推理能力。 2、RL训练使用群体相对策略优化(GRPO),奖励模型是规则驱动,准确性奖励和格式化奖励。 1. 总体概述 背景与目标 报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)…...

VUE之组件通信(三)

1、$refs与$parent 1)概述: $refs用于:父——>子。$parent用于:子——>父。 2)原理如下: 属性说明$refs值为对象,包含所有被ref属性标识的DOM元素或组件实例。$parent值为对象&#x…...

【Redis实战】投票功能

1. 前言 现在就来实践一下如何使用 Redis 来解决实际问题,市面上很多网站都提供了投票功能,比如 Stack OverFlow 以及 Reddit 网站都提供了根据文章的发布时间以及投票数计算出一个评分,然后根据这个评分进行文章的展示顺序。本文就简单演示…...

linux常用基础命令 最新1

常用命令 查看当前目录下个各个文件大小查看当前系统储存使用情况查看当前路径删除当前目录下所有包含".log"的文件linux开机启动jar更改自动配置文件后操作关闭自启动linux静默启动java服务查询端口被占用查看软件版本重启关机开机启动取别名清空当前行创建文件touc…...

UnityShader学习笔记——多种光源

——内容源自唐老狮的shader课程 目录 1.光源类型 2.判断光源类型 2.1.在哪判断 2.2.如何判断 3.光照衰减 3.1.基本概念 3.2.unity中的光照衰减 3.3.光源空间变换矩阵 4.点光源衰减计算 5.聚光灯衰减计算 5.1.聚光灯的cookie(灯光遮罩) 5.2.聚…...

深入浅出谈VR(虚拟现实、VR镜头)

1、VR是什么鬼? 近两年VR这次词火遍网上网下,到底什么是VR?VR是“Virtual Reality”,中文名字是虚拟现实,是指采用计算机技术为核心的现代高科技手段生成一种虚拟环境,用户借助特殊的输入/输出设备&#x…...

项目2 车牌检测

检测车牌 1. 基本思想2. 基础知识2.1 YOLOV5(参考鱼苗检测)2.1.1 模型 省略2.1.2 输入输出 省略2.1.3 损失函数 省略2.2 LPRNet2.2.1 模型2.2.2 输入输出2.2.3 损失函数3. 流程3.1 数据处理3.1.1 YOLOV5数据处理3.2.2 LPRNet数据处理3.2 训练3.2.1 YOLOV5训练 省略3.2.2 LPRN…...

Linux: 网络基础

1.协议 为什么要有协议:减少通信成本。所有的网络问题,本质是传输距离变长了。 什么是协议:用计算机语言表达的约定。 2.分层 软件设计方面的优势—低耦合。 一般我们的分层依据:功能比较集中,耦合度比较高的模块层…...

【实战篇】巧用 DeepSeek,让 Excel 数据处理更高效

一、为何选择用 DeepSeek 处理 Excel 在日常工作与生活里,Excel 是我们频繁使用的工具。不管是统计公司销售数据、分析学生成绩,还是梳理个人财务状况,Excel 凭借其强大的功能,如数据排序、筛选和简单公式计算,为我们提供了诸多便利。但当面对复杂的数据处理任务,比如从…...

Flink CDC YAML:面向数据集成的 API 设计

摘要:本文整理自阿里云智能集团 、Flink PMC Member & Committer 徐榜江(雪尽)老师在 Flink Forward Asia 2024 数据集成(一)专场中的分享。主要分为以下四个方面: Flink CDC YAML API Transform A…...

RabbitMQ技术深度解析:打造高效消息传递系统

引言 在当前的分布式系统架构中,消息队列作为一种高效的消息传递机制,扮演着越来越重要的角色。RabbitMQ,作为广泛使用的开源消息代理,以其高可用性、扩展性和灵活性赢得了众多开发者的青睐。本文将深入探讨RabbitMQ的核心概念、…...

DeepSeek与人工智能的结合:探索搜索技术的未来

云边有个稻草人-CSDN博客 目录 引言 一、DeepSeek的技术背景 1.1 传统搜索引擎的局限性 1.2 深度学习在搜索中的优势 二、DeepSeek与人工智能的结合 2.1 自然语言处理(NLP) 示例代码:基于BERT的语义搜索 2.2 多模态搜索 示例代码&…...

TAPEX:通过神经SQL执行器学习的表格预训练

摘要 近年来,语言模型预训练的进展通过利用大规模非结构化文本数据取得了巨大成功。然而,由于缺乏大规模高质量的表格数据,在结构化表格数据上应用预训练仍然是一个挑战。本文提出了TAPEX,通过在一个合成语料库上学习神经SQL执行…...

Qt:Qt基础介绍

目录 Qt背景介绍 什么是Qt Qt的发展史 Qt支持的平台 Qt版本 Qt的优点 Qt的应用场景 Qt的成功案例 Qt的发展前景及就业分析 Qt背景介绍 什么是Qt Qt是⼀个跨平台的C图形用户界面应用程序框架。它为应用程序开发者提供了建立艺术级图形界面所需的所有功能。它是完全面向…...

加速度计信号处理

【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)_加速度计滤波器-CSDN博客 https://wenku.baidu.com/view/622d38b90f22590102020740be1e650e52eacff9.html?_wkts_1738906719916&bdQ…...

基于SpringBoot养老院平台系统功能实现六

一、前言介绍: 1.1 项目摘要 随着全球人口老龄化的不断加剧,养老服务需求日益增长。特别是在中国,随着经济的快速发展和人民生活水平的提高,老年人口数量不断增加,对养老服务的质量和效率提出了更高的要求。传统的养…...

Conmi的正确答案——Rider中添加icon作为exe的图标

C#版本&#xff1a;.net 8.0 Rider版本&#xff1a;#RD-243.22562.250&#xff08;非商业使用版&#xff09; 1、添加图标到解决方案下&#xff1a; 2、打开“App.xaml”配置文件&#xff0c;添加配置&#xff1a; <Applicationx:Class"ComTransmit.App"xmlns&q…...

机试题——DNS本地缓存

题目描述 正在开发一个DNS本地缓存系统。在互联网中&#xff0c;DNS&#xff08;Domain Name System&#xff09;用于将域名&#xff08;例如www.example.com&#xff09;解析为IP地址&#xff0c;以便将请求发送到正确的服务器上。通常情况下&#xff0c;DNS请求会发送到互联…...

Day38【AI思考】-彻底打通线性数据结构间的血脉联系

文章目录 **彻底打通线性数据结构间的血脉联系****数据结构家族谱系图****一、线性表&#xff08;老祖宗的规矩&#xff09;****核心特征** **二、嫡系血脉解析**1. **数组&#xff08;规矩森严的长子&#xff09;**2. **链表&#xff08;灵活变通的次子&#xff09;** **三、庶…...

【LeetCode】152、乘积最大子数组

【LeetCode】152、乘积最大子数组 文章目录 一、dp1.1 dp1.2 简化代码 二、多语言解法 一、dp 1.1 dp 从前向后遍历, 当遍历到 nums[i] 时, 有如下三种情况 能得到最大值: 只使用 nums[i], 例如 [0.1, 0.3, 0.2, 100] 则 [100] 是最大值使用 max(nums[0…i-1]) * nums[i], 例…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...