AUTOSAR面试题集锦(1)
最基础概念
什么是AUTOSAR?AUTOSAR到底做了什么?
AUTOSAR,即汽车开放系统架构,是一套专门用于汽车的开放性的框架和行业标准,旨在标准化汽车开发的流程。
AUTOSAR 通过标准化软件接口、交换格式和方法论等内容,主要实现以下几个目标:
1. 使软件和硬件彼此独立,让应用层开发人员不需要过多的关注硬件;
2. 制定软件接口规范,使得软件不会高度依赖硬件平台,提高代码的复用性;
3. 通过标准化的开发流程和方法,降低汽车软件开发的重复性工作,提高工作效率和软件质量。
通过上述几个目标,AUTOSAR 可以实现大幅缩短开发时间和成本。
AUTOSAR的结构是什么样的?分为哪几层?
AUTOSAR 架构可以先被抽象成三个层次:应用层 ,RTE层 和 BSW层 ,这三层组成软件,架在微控制器上。
应用层:包含所有汽车电子系统的应用软件,封装了相关的控制算法,并由RTE事件触发。
RTE层:作为应用层与基础软件层交互的桥梁,封装了基础软件层的通信和服务,为应用层软件提供了标准化的基础软件和通信接口,实现了软硬件的分离。
BSW层:通过软件实现对硬件的控制,并提供一系列接口供商城调用。
其中BSW层可以再被细分为 服务层 、ECU抽象层 、微控制器抽象层(MCAL) 和 复杂驱动(CDD)。
服务层:提供汽车嵌入式系统软件常用的一些服务,包括网络通信管理、存储管理、ECU模式
相关文章:
AUTOSAR面试题集锦(1)
最基础概念 什么是AUTOSAR?AUTOSAR到底做了什么? AUTOSAR,即汽车开放系统架构,是一套专门用于汽车的开放性的框架和行业标准,旨在标准化汽车开发的流程。 AUTOSAR 通过标准化软件接口、交换格式和方法论等内容,主要实现以下几个目标: 1. 使软件和硬件彼此独立,让应…...
【Uniapp-Vue3】从uniCloud中获取数据
需要先获取数据库对象: let db uniCloud.database(); 获取数据库中数据的方法: db.collection("数据表名称").get(); 所以就可以得到下面的这个模板: let 函数名 async () > { let res await db.collection("数据表名称…...
AIOS: 一个大模型驱动的Multi-Agent操作系统设计与Code分析
AIOS: 一个大模型驱动的Multi-Agent操作系统设计与Code分析 随着人工智能技术的快速发展,传统操作系统逐渐暴露出难以适应AI时代多样化需求的局限性。特别是在支持多个智能体协同工作方面存在显著不足。为此,我们提出了一种名为AIOS(Artifici…...
Python----Python高级(网络编程:网络基础:发展历程,IP地址,MAC地址,域名,端口,子网掩码,网关,URL,DHCP,交换机)
一、网络 早期的计算机程序都是在本机上运行的,数据存储和处理都在同一台机器上完成。随着技术的发展,人 们开始有了让计算机之间相互通信的需求。例如安装在个人计算机上的计算器或记事本应用,其运行环 境仅限于个人计算机内部。这种设置虽然…...
收集的面试资料
转载自:NLP_基于酒店评论的情感分析-CSDN博客 机器学习的一般过程 如何介绍项目: 项目背景:项目输入,输出,后续应用点 项目数据:数据来源 数据处理方法:是否有脏数据,如何处理脏数据…...
pytest-xdist 进行多进程并发测试!
在软件开发过程中,测试是确保代码质量和可靠性的关键步骤。随着项目规模的扩大和复杂性的增加,测试用例的执行效率变得尤为重要。为了加速测试过程,特别是对于一些可以并行执行的测试用 例,pytest-xdist 提供了一种强大的工具&…...
LVGL4种输入设备详解(触摸、键盘、实体按键、编码器)
lvgl有触摸、键盘、实体按键、编码器四种输入设备 先来分析一下这四种输入设备有什么区别 (1)LV_INDEV_TYPE_POINTER 主要用于触摸屏 用到哪个输入设备保留哪个其他的也是,保留触摸屏输入的任务注册,其它几种种输入任务的注册&…...
全流程安装DeepSeek开源模型
目录 配置要求安装Ollama选择大模型安装大模型对话备注 配置要求 我的电脑配置为: CPU:i7 12代 GPU:3080 内存:32g 磁盘:1T以上配置运行情况: 运行ollama run deepseek-r1:7b模型无压力,CPU/…...
人工智能领域-CNN 卷积神经网络 性能调优
在自动驾驶领域,对卷积神经网络(CNN)进行性能调优至关重要,以下从数据处理、模型架构、训练过程、超参数调整和模型部署优化等多个方面为你详细介绍调优方法,并给出相应的代码示例。 1. 数据处理 数据增强࿱…...
人工智能A*算法与CNN结合- CNN 增加卷积层的数量,并对卷积核大小进行调整
以下是一个增强版的将 A* 算法与卷积神经网络(CNN)结合的代码实现,其中 CNN 增加了卷积层的数量,并对卷积核大小进行了调整。整体思路依然是先利用 A* 算法生成训练数据,再用这些数据训练 CNN 模型,最后使用…...
机器学习中常用的评价指标
一、分类任务常用指标 1. 准确率(Accuracy) 定义:正确预测样本数占总样本数的比例。优点:直观易懂,适用于类别平衡的数据。缺点:对类别不平衡数据敏感(如欺诈检测中99%的负样本)。…...
Windows安装cwgo,一直安装的是linux平台的
Windows安装cwgo,一直安装的是linux平台的 查看 go env ,发现 GOOSlinux 临时修改 GOOS ,set GOOSwindows ,再安装。 此时,安装的就是 windows 的可执行文件。安装之后再将 GOOS 修改回来即可。...
GitHub Pages + Jekyll 博客搭建指南(静态网站)
目录 🚀 静态网站及其生成工具指南🌍 什么是静态网站?📌 静态网站的优势⚖️ 静态网站 VS 动态网站 🚀 常见的静态网站生成器对比🛠️ 使用 GitHub Pages Jekyll 搭建个人博客📌 1. 创建 GitHu…...
21.[前端开发]Day21-HTML5新增内容-CSS函数-BFC-媒体查询
王者荣耀-网页缩小的问题处理 为什么会产生这个问题?怎么去解决 可以给body设置最小宽度 1 HTML5新增元素 HTML5语义化元素 HTML5其他新增元素 2 Video、Audio元素 HTML5新增元素 - video video支持的视频格式 video的兼容性写法 HTML5新增元素 - audio audio…...
C++SLT(五)——list
目录 一、list的介绍二、list的使用list的定义方式 三、list的插入和删除push_back和pop_backpush_front和pop_frontinserterase 四、list的迭代器使用五、list的元素获取六、list的大小控制七、list的操作函数sort和reversemergeremoveremove_ifuniqueassignswap 一、list的介…...
网络安全ITP是什么 网络安全产品ips
DS/IPS都是专门针对计算机病毒和黑客入侵而设计的网络安全设备 1、含义不同 IDS :入侵检测系统(发现非法入侵只能报警不能自己过滤) 做一个形象的比喻:假如防火墙是一幢大楼的门锁,那么IDS就是这幢大楼里的监视系统…...
评估大模型(LLM)摘要生成能力:方法、挑战与策略
大语言模型(LLMs)有着强大的摘要生成能力,为信息快速提取和处理提供了便利。从新闻文章的快速概览到学术文献的要点提炼,LLMs 生成的摘要广泛应用于各个场景。然而,准确评估这些摘要的质量却颇具挑战。如何确定一个摘要…...
《PYTHON语言程序设计》(2018版)1.20修改这道题,利用类的方式(二) 接近成功....(上)
在类的外面建立4个顶点 turtle.speed(20)ran1_x1 random.randint(-69, -60) ran1_y1 random.randint(-5, 10) ran1_x2 random.randint(-69, -60) ran1_y2 random.randint(75, 80) ran1_x3 random.randint(79, 90) ran1_y3 random.randint(70, 85) ran1_x4 random.randin…...
USB子系统学习(四)使用libusb读取鼠标数据
文章目录 1、声明2、HID协议2.1、描述符2.2、鼠标数据格式 3、应用程序4、编译应用程序5、测试 1、声明 本文是在学习韦东山《驱动大全》USB子系统时,为梳理知识点和自己回看而记录,全部内容高度复制粘贴。 韦老师的《驱动大全》:商品详情 …...
【产品小白】用户调研的需求是否都采纳?
在用户调研中,并非所有需求都应被直接采纳,而应通过系统分析转化为符合产品战略的有效决策。以下是关键思考框架: 1. 用户需求 ≠ 产品需求 矛盾性:用户个体需求可能相互冲突(如A功能的去留),需…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
