当前位置: 首页 > news >正文

高并发读多写少场景下的高效键查询与顺序统计的方案思路

之前在某平台看到一篇有意思的场景——对于高并发读多写少场景下,如何进行高效键查询与统计早于其创建时间且没有被删除的数量(只需要先入先出,不需要从中间删元素)

在高并发、读多写少的场景下,业务需求通常聚焦在以下两点:

  1. 高效查询键对应的值 —— 需要能够快速定位特定键的存储值。
  2. 统计该键前有多少个未被删除的键值对 —— 需要知道当前键在整个数据序列中的相对顺序,同时剔除已删除的无效数据。

传统的数据库索引或简单的哈希存储难以同时满足这两个需求,尤其是在高并发环境下,如何在不影响查询效率的前提下维持顺序统计成为关键挑战。

核心挑战

  1. 高并发读请求的优化 —— 需要降低锁争用,确保查询高效。
  2. 如何在键查询的同时,快速获取其顺序统计值 —— 需要维护高效的数据结构来支撑有序查询和统计。
  3. 处理删除操作对顺序统计的影响 —— 不能简单地用固定索引,而要考虑动态变化的删除情况。

方案一:map+有序数组

方案一可能是最直观的,就是将两种业务需求通过两个数据结构分别进行解决,一种以空间换时间的典型思路

但方案一存在的问题,不仅仅只是占用了更多的空间,而更在于

  1. 数据一致性难以保障
    • 写入时,需要同时写入map和有序数组,只要其中一个失败都会导致数据一致性失效
  2. 性能瓶颈
    • 计算前置键值对数量需要遍历,性能较差
    • 写时要同时写两个地方,性能较差,还会影响读取
    • 写入时需要同时获取多个锁,处理不好会造成死锁

方案二:跳表

方案二引入了跳表,跳表的优势在于既能以比较快的速度快速查询到值,而且也具有有序性

  1. 空间开销较大

    每个节点需要维护多个层级指针,需要额外储存层级、计数信息

  2. 并发控制相对复杂

    • 节点更新涉及多个层级的指针修改,需要保证原子性
    • 如果使用粗粒度锁会严重影响并发性能,如果使用细粒度锁,可能会出现死锁
    • 在调整索引层级时,需要处理复杂的并发场景
  3. 计算前置节点数量仍需要O(log n)的遍历操作,并可能在最坏情况下发生退化

方案三:双Map+自增ID

这个方案的核心思想是通过两个映射表和一个自增ID来实现所需的所有功能。这种设计利用了FIFO的特性,巧妙地用自增ID来表示元素的插入顺序,从而避免了复杂的数据结构。

数据结构设计
  1. 主数据映射表
    • 用途:储存实际键值对(并发安全)
    • 键:用户提供的键
    • 值:包含实际值和对应自增id
  2. ID键映射表
    • 用途:储存自增ID到键的映射关系,提供快速顺序查询能力(并发安全)
    • 键:分配该键的自增ID
    • 值:用户提供的键
  3. 自增ID管理
    • 当前最大ID:记录已分配的最大ID值
    • 队首ID:记录当前未被删除的最小ID值
    • 特点:使用原子操作确保线程安全
操作原理

写入

  1. 获取新自增ID
  2. 将键值和自增ID存入主数据映射表
  3. 将ID、键对应关系存入ID键映射表

当需要查询某个键对应的值时:

  1. 直接从主数据映射表中获取数据

当需要知道某个键之前有多少个元素时:

  1. 从主数据映射表中获取目标键的ID
  2. 获取当前队首ID(最小未删除ID)
  3. 两者相减即可得到前面的元素数量

删除操作由于是FIFO队列,只需要删除队首元素:通过原子操作增加队首ID,无需立即从映射表中删除数据,可以通过后台任务定期清理已删除的数据,不影响其他操作的执行

有意思的是这个设计与mysql索引有些类似,主数据映射表就是主键索引,ID键映射表就是二级索引

方案四:redis zset

如果将创建时间作为redis zset的score,那么就能很好满足该场景下的需求

zrank查询对应的值的时候就会返回这个值的排序下标(整个 zset 排序下标从 0 开始), 默认 timestamp 升序, zrank 返回的值减 1 就知道前面有多少个是先于它了.

redis zset其实依然hash表加跳表

性能分析

优势

  • zset跳表提供了O(log(N))的查询性能
  • redis单线程避免了并发控制的复杂性
  • 支持丰富的排序和范围查询操作
  • 方便实现分布式拓展

缺点

  • 内存占用较高
  • 原子性需要通过MULTI/EXEC实现
  • 获取有效键数量需要多次操作
  • 受Redis单实例内存限制

方案五:分布式

分布式是考虑到极大访问量的场景所应用的方案

kafka+elasticsearch

写入时流转kafka随后写入es,采用es倒排索引作为键快速查询,es聚合功能作为计数统计

分片+本地缓存

通过一致性hash定位分片,然后统计每个分片中本地缓存的目标数量,最后进行合并

相关文章:

高并发读多写少场景下的高效键查询与顺序统计的方案思路

之前在某平台看到一篇有意思的场景——对于高并发读多写少场景下,如何进行高效键查询与统计早于其创建时间且没有被删除的数量(只需要先入先出,不需要从中间删元素) 在高并发、读多写少的场景下,业务需求通常聚焦在以…...

Android Studio 配置 Gerrit Code Review

很多大厂(华为、荣耀)的大型项目都有gerrit代码审查流程,那么我们如何实现不手动敲命令行,就在Android Studio中像平常开发一样,只需要用鼠标点点点,就能将代码推送到gerrit审查仓呢,现在就来跟…...

html为<td>添加标注文本

样式说明: /*为td添加相对定位点*/ .td_text {position: relative; }/*为p添加绝对坐标(相对于父元素中的定位点)*/ .td_text p {position: absolute;top: 80%;font-size: 8px; }参考资料:...

(done) openMP学习 (Day10: Tasks 原语)

url: https://dazuozcy.github.io/posts/introdution-to-openmp-intel/#19-%E6%8A%80%E8%83%BD%E8%AE%AD%E7%BB%83%E9%93%BE%E8%A1%A8%E5%92%8Copenmp 本章节内容仅提供引入,关于 task 更详细的细节请看 openMP 手册或者源材料 Day9 介绍了一个优化链表遍历的粗糙方…...

力扣-字符串-28 找出字符串中第一个匹配项的下标

思路 kmp算法的练习&#xff0c;实际上来说在构建next数组和使用next数组都用到了前一位字符串的最长相等前后缀 代码 class Solution { public:void getNext(int *next, string s){int j 0;next[0] 0;for(int i 1; i < s.size(); i){while(j > 0 && s[j] …...

linux 基础知识点之工作队列workqueue

多年前就了解了workqueue着玩意&#xff0c;但理解上就并不是很很深刻&#xff0c;今天重新梳理一下&#xff0c;本文重点的是哪个些现成的demo代码&#xff0c;都是可以直接拿来用的&#xff0c;这就是写这文章的目的和作用&#xff0c;就是为了备份后续工作用到的时候&#x…...

C++蓝桥杯基础篇(二)

片头 嗨&#xff01;小伙伴们&#xff0c;今天我们将学习C蓝桥杯基础篇&#xff08;二&#xff09;&#xff0c;继续练习相关习题&#xff0c;准备好了吗&#xff1f;咱们开始咯~ 第1题 简单计算器输入两个数&#xff0c;以及一个运算符 &#xff0c;-&#xff0c;*&#xff…...

【Android—OpenCV实战】实现霍夫圆检测针对沙盘交通灯信号检测

文章目录 Android OpenCV实战&#xff1a;霍夫圆检测实现沙盘交通灯智能识别&#x1f31f; 引言&#xff1a;当计算机视觉遇见智慧交通&#x1f50d; 霍夫圆检测原理剖析&#x1f50d; 数学之美&#xff1a;参数空间转换&#x1f50d; 关键参数解析 &#x1f6e0; Android实现全…...

WPS如何接入DeepSeek(通过JS宏调用)

WPS如何接入DeepSeek 一、文本扩写二、校对三、翻译 本文介绍如何通过 WPS JS宏调用 DeepSeek 大模型&#xff0c;实现自动化文本扩写、校对和翻译等功能。 一、文本扩写 1、随便打开一个word文档&#xff0c;点击工具栏“工具”。 2、点击“开发工具”。 3、点击“查看代码”…...

图论——环检测

环检测以及拓扑排序 前言复习模版环检测-DFS版本环检测- BFS版本 前言 我觉得学习这些之前,一定要对图的数据结构和抽象模型有概念,并且图构建的代码模版应该手到擒来,不然还是挺折磨的,不是这差一点就是那差一点,写道力扣卡卡的非常烦人. 复习模版 我觉得单拿出来再说这个模…...

Chapter2:C#基本数据类型

参考书籍&#xff1a;《C#边做边学》&#xff1b; 2.C#基本数据类型 2.1 变量与常量 变量是程序运行过程中用于存放数据的存储单元&#xff0c;变量的值的程序运行过程中可以改变&#xff1b; 变量定义&#xff1a; 定义变量时&#xff0c;必须给每个变量起名&#xff0c;通过…...

kafka服务端之控制器

文章目录 概述控制器的选举与故障恢复控制器的选举故障恢复 优雅关闭分区leader的选举 概述 在Kafka集群中会有一个或多个broker&#xff0c;其中有一个broker会被选举为控制器&#xff08;Kafka Controler&#xff09;&#xff0c;它负责管理整个集群中所有分区和副本的状态。…...

Unity笔试常考

线程同步的几种方式 1.信号量pv操作 2.互斥加锁 3.条件变量 五层网络协议指的是哪五层 1.应用层 2.运输层 3.网络层 4.链路层 5.物理层 TCP和UDP区别 tcp 面向连接&#xff0c;保证发送顺序&#xff0c;速度慢&#xff0c;必须在线&#xff0c;三次握手&#xff0c;4次挥手…...

移植BOA服务器到GEC2440开发板

所需软件:boa-0.94.13.tar.tar(下载:http://www.boa.org/boa-0.94.13.tar.gz) 步骤: 设置好交叉编译工具链。 1、解压下载好的压缩包(tar xzvf boa-0.94.13.tar.tar),并进入解压后的目录(cd boa-0.94.13),再进行如下操作: 先进入到src目录(下面操作都是在该目录下进行…...

WPS如何接入DeepSeek(通过第三方工具)

WPS如何接入DeepSeek 一、下载并安装OfficeAI插件二、配置OfficeAI插件三、使用DeepSeek功能 本文介绍如何通过 WPS 的第三方工具调用 DeepSeek 大模型&#xff0c;实现自动化文本扩写、校对和翻译等功能。 一、下载并安装OfficeAI插件 1、访问OfficeAI插件下载地址&#xff…...

【安当产品应用案例100集】037-强化OpenVPN安全防线的卓越之选——安当ASP身份认证系统

在当前数字化时代&#xff0c;网络安全已成为企业发展的重要组成部分。对于使用OpenVPN的企业而言&#xff0c;确保远程访问的安全性尤为重要。安当ASP身份认证系统凭借其强大的功能和便捷的集成方式&#xff0c;为OpenVPN的二次登录认证提供了理想的解决方案&#xff0c;特别是…...

Windows Docker笔记-制作、加载镜像

引言 在文章《Windows Docker笔记-在容器中运行项目》中&#xff0c;已经在容器中运行了项目。而且在这个容器中&#xff0c;已经调试好了项目运行的环境。 使用docker&#xff0c;就是为了在项目发布到生产环境时&#xff0c;不用再去安装项目运行的环境&#xff0c;直接丢给…...

leetcode_26删除有序数组中的重复项

1. 题意 给定一个重复数组&#xff0c;删除其中的重复项目。 2. 题解 双指针 一个指针指向有序不重复数组的最后一个数&#xff0c;另外一个数遍历整个数组&#xff0c;若两个指针对应用的数不相同&#xff0c;有序数组的指针右移&#xff0c;将数填入。 代码一 class Sol…...

速递丨DeepSeek刚刚成立香港子公司,或因考虑香港上市和招募全球AI人才

图片来源&#xff1a;DeepSeek 根据彭博社和财联社报道&#xff0c;DeepSeek 2月5日在香港成立了两家公司——DeepSeek Limited 和 DeepSeek (HK) Limited。 香港中文大学莊太量教授表示&#xff0c;DeepSeek进军香港将推动该市的金融科技发展。如果DeepSeek考虑在香港上市&a…...

笔灵ai写作技术浅析(六):智能改写与续写

笔灵AI写作中的智能改写和续写技术是其核心功能之一,旨在帮助用户生成高质量、多样化的文本内容。 一、智能改写技术 1. 基本原理 智能改写的目标是在保持原文语义不变的前提下,对文本进行重新表述,生成语法正确、语义连贯且风格多样的新文本。其核心思想是通过语义理解和…...

【在线优化】【有源程序】基于遗传算法(GA)和粒子群优化(PSO)算法的MPPT控制策略

目录 一、背景 二、源程序及结果 2.1 simulink仿真程序 2.2 GA模块源程序 2.3 PSO模块源程序 三、程序运行结果 3.1 基于GA优化的MPPT 3.2 基于PSO优化的MPPT 一、背景 MPPT策略能够显著提高光伏、风电等发电效率&#xff0c;节省大量成本。该策略的经典算法是&#xf…...

使用 Three.js 实现热力渐变效果

大家好&#xff01;我是 [数擎 AI]&#xff0c;一位热爱探索新技术的前端开发者&#xff0c;在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情&#xff0c;欢迎关注我的文章&#xff0c;我们一起成长、进步&#xff01; 开发领域&#xff1a;前端开发 | A…...

java-异常家族梳理(流程图)

前言: 使用流程图梳理异常,便于理解 梳理: Throwable ├── Error(严重错误,无需捕获) │ ├── OutOfMemoryError │ ├── StackOverflowError │ └── ... ├── Exception(可捕获处理) │ ├── RuntimeException(非检查异常/Unchecked) │ …...

开启蓝耘之旅:DeepSeek R1 模型在智算平台的起步教程

----------------------------------------------------------我的个人主页-------------------- 动动你的手指----------------------------------------点赞&#x1f44d; 收藏❤--------------------------------------------------------------- 引言 在深度学习的广袤领…...

[高等数学]不定积分的概念与性质

一、知识点 &#xff08;一&#xff09;原函数与不定积分的概念 定义1&#xff08;原函数&#xff09; 如果在区间 I I I 上&#xff0c;可导函数 F ( x ) F(x) F(x) 的导函数为 f ( x ) f(x) f(x)&#xff0c;即对任一 x ∈ I x\in I x∈I&#xff0c;都有 F ′ ( x )…...

【算法】【高精度】acwing算法基础 793. 高精度乘法

题目 给定两个非负整数&#xff08;不含前导 0&#xff09; A 和 B&#xff0c;请你计算 AB 的值。 输入格式 共两行&#xff0c;第一行包含整数 A&#xff0c;第二行包含整数 B。 输出格式 共一行&#xff0c;包含 AB 的值。 数据范围 1≤A的长度≤100000, 0≤B≤10000 输入样…...

sqlite 查看表结构

在SQLite中&#xff0c;查看表结构通常有以下几种方法&#xff1a; 使用.schema命令 在SQLite的命令行界面中&#xff0c;你可以使用.schema命令加上表名来查看该表的结构。例如&#xff0c;如果你想查看名为your_table_name的表结构&#xff0c;你可以这样做&#xff1a; .s…...

测试中的第一性原理:回归本质的质量思维革命

在软件工程领域&#xff0c;测试活动常被惯性思维和经验主义所主导——测试用例库无限膨胀、自动化脚本维护成本居高不下、测试策略与业务目标渐行渐远。要突破这种困境&#xff0c;第一性原理&#xff08;First Principles Thinking&#xff09;提供了独特的解题视角&#xff…...

flink判断两个事件之间有没有超时(不使用CEP)

1.为啥不使用cep呢&#xff0c;cep的超时时间设置不好配置化&#xff0c;无法满足扩展要求 2.超时怎么界定。A事件发生后&#xff0c;过了N时间&#xff0c;还没有收到B事件&#xff0c;算超时。 代码如下&#xff1a; import com.alibaba.fastjson.JSONObject; import lombo…...

二级C语言题解:十进制转其他进制、非素数求和、重复数统计

目录 一、程序填空&#x1f4dd; --- 十进制转其他进制 题目&#x1f4c3; 分析&#x1f9d0; 二、程序修改&#x1f6e0;️ --- 非素数求和 题目&#x1f4c3; 分析&#x1f9d0; 三、程序设计&#x1f4bb; --- 重复数统计 题目&#x1f4c3; 分析&#x1f9d0; 前言…...