当前位置: 首页 > news >正文

Python Pandas(3):DataFrame

1 介绍

        DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引),提供了各种功能来进行数据访问、筛选、分割、合并、重塑、聚合以及转换等操作。DataFrame 是一个非常灵活且强大的数据结构,广泛用于数据分析、清洗、转换、可视化等任务。

1.1 DataFrame 特点

  • 二维结构: DataFrame 是一个二维表格,可以被看作是一个 Excel 电子表格或 SQL 表,具有行和列。可以将其视为多个 Series 对象组成的字典。
  • 列的数据类型: 不同的列可以包含不同的数据类型,例如整数、浮点数、字符串或 Python 对象等。
  • 索引DataFrame 可以拥有行索引和列索引,类似于 Excel 中的行号和列标。
  • 大小可变:可以添加和删除列,类似于 Python 中的字典。
  • 自动对齐:在进行算术运算或数据对齐操作时,DataFrame 会自动对齐索引。
  • 处理缺失数据DataFrame 可以包含缺失数据,Pandas 使用 NaN(Not a Number)来表示。
  • 数据操作:支持数据切片、索引、子集分割等操作。
  • 时间序列支持DataFrame 对时间序列数据有特别的支持,可以轻松地进行时间数据的切片、索引和操作。
  • 丰富的数据访问功能:通过 .loc.iloc 和 .query() 方法,可以灵活地访问和筛选数据。
  • 灵活的数据处理功能:包括数据合并、重塑、透视、分组和聚合等。
  • 数据可视化:虽然 DataFrame 本身不是可视化工具,但它可以与 Matplotlib 或 Seaborn 等可视化库结合使用,进行数据可视化。
  • 高效的数据输入输出:可以方便地读取和写入数据,支持多种格式,如 CSV、Excel、SQL 数据库和 HDF5 格式。
  • 描述性统计:提供了一系列方法来计算描述性统计数据,如 .describe().mean().sum() 等。
  • 灵活的数据对齐和集成:可以轻松地与其他 DataFrame 或 Series 对象进行合并、连接或更新操作。
  • 转换功能:可以对数据集中的值进行转换,例如使用 .apply() 方法应用自定义函数。
  • 滚动窗口和时间序列分析:支持对数据集进行滚动窗口统计和时间序列分析。

1.2 创建DataFrame

        DataFrame 构造方法如下:

pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
  • data:DataFrame 的数据部分,可以是字典、二维数组、Series、DataFrame 或其他可转换为 DataFrame 的对象。如果不提供此参数,则创建一个空的 DataFrame。
  • index:DataFrame 的行索引,用于标识每行数据。可以是列表、数组、索引对象等。如果不提供此参数,则创建一个默认的整数索引。
  • columns:DataFrame 的列索引,用于标识每列数据。可以是列表、数组、索引对象等。如果不提供此参数,则创建一个默认的整数索引。
  • dtype:指定 DataFrame 的数据类型。可以是 NumPy 的数据类型,例如 np.int64np.float64 等。如果不提供此参数,则根据数据自动推断数据类型。
  • copy:是否复制数据。默认为 False,表示不复制数据。如果设置为 True,则复制输入的数据。

1.2.1 使用列表创建

import pandas as pddata = [['Google', 10], ['Bing', 12], ['Wiki', 13]]# 创建DataFrame
df = pd.DataFrame(data, columns=['Site', 'Age'])# 使用astype方法设置每列的数据类型
df['Site'] = df['Site'].astype(str)
df['Age'] = df['Age'].astype(float)print(df)

1.2.2 使用字典创建

import pandas as pddata = {'Site': ['Google', 'Bing', 'Wiki'], 'Age': [10, 12, 13]}df = pd.DataFrame(data)print(df)

1.2.3 使用ndarrays 创建

import numpy as np
import pandas as pd# 创建一个包含网站和年龄的二维ndarray
ndarray_data = np.array([['Google', 10],['Bing', 12],['Wiki', 13]
])# 使用DataFrame构造函数创建数据帧
df = pd.DataFrame(ndarray_data, columns=['Site', 'Age'])# 打印数据帧
print(df)

1.2.4 使用字典(key/value)

import pandas as pddata = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]df = pd.DataFrame(data)print(df)

        没有对应的部分数据为 NaN

1.2.5 从 Series 创建 DataFrame

import pandas as pd# 从 Series 创建 DataFrame
s1 = pd.Series(['Alice', 'Bob', 'Charlie'])
s2 = pd.Series([25, 30, 35])
s3 = pd.Series(['New York', 'Los Angeles', 'Chicago'])
df = pd.DataFrame({'Name': s1, 'Age': s2, 'City': s3})
print(df)

1.3 loc属性

        Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:

import pandas as pddata = {"calories": [420, 380, 390],"duration": [50, 40, 45]
}# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)# 返回第一行
print(df.loc[0])
# 返回第二行
print(df.loc[1])

        返回结果其实就是一个 Pandas Series 数据。也可以返回多行数据,使用 [[ ... ]] 格式,... 为各行的索引,以逗号隔开:

import pandas as pddata = {"calories": [420, 380, 390],"duration": [50, 40, 45]
}# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)# 返回第一行和第二行
print(df.loc[[0, 1]])

        返回结果其实就是一个 Pandas DataFrame 数据。我们可以指定索引值,如下实例:

import pandas as pddata = {"calories": [420, 380, 390],"duration": [50, 40, 45]
}df = pd.DataFrame(data, index=["day1", "day2", "day3"])print(df)

        Pandas 可以使用 loc 属性返回指定索引对应到某一行:

import pandas as pddata = {"calories": [420, 380, 390],"duration": [50, 40, 45]
}df = pd.DataFrame(data, index=["day1", "day2", "day3"])# 指定索引
print(df.loc["day2"])

2 DataFrame 方法

方法名称功能描述
head(n)返回 DataFrame 的前 n 行数据(默认前 5 行)
tail(n)返回 DataFrame 的后 n 行数据(默认后 5 行)
info()显示 DataFrame 的简要信息,包括列名、数据类型、非空值数量等
describe()返回 DataFrame 数值列的统计信息,如均值、标准差、最小值等
shape返回 DataFrame 的行数和列数(行数, 列数)
columns返回 DataFrame 的所有列名
index返回 DataFrame 的行索引
dtypes返回每一列的数值数据类型
sort_values(by)按照指定列排序
sort_index()按行索引排序
dropna()删除含有缺失值(NaN)的行或列
fillna(value)用指定的值填充缺失值
isnull()判断缺失值,返回一个布尔值 DataFrame
notnull()判断非缺失值,返回一个布尔值 DataFrame
loc[]按标签索引选择数据
iloc[]按位置索引选择数据
at[]访问 DataFrame 中单个元素(比 loc[] 更高效)
iat[]访问 DataFrame 中单个元素(比 iloc[] 更高效)
apply(func)对 DataFrame 或 Series 应用一个函数
applymap(func)对 DataFrame 的每个元素应用函数(仅对 DataFrame)
groupby(by)分组操作,用于按某一列分组进行汇总统计
pivot_table()创建透视表
merge()合并多个 DataFrame(类似 SQL 的 JOIN 操作)
concat()按行或按列连接多个 DataFrame
to_csv()将 DataFrame 导出为 CSV 文件
to_excel()将 DataFrame 导出为 Excel 文件
to_json()将 DataFrame 导出为 JSON 格式
to_sql()将 DataFrame 导出为 SQL 数据库
query()使用 SQL 风格的语法查询 DataFrame
duplicated()返回布尔值 DataFrame,指示每行是否是重复的
drop_duplicates()删除重复的行
set_index()设置 DataFrame 的索引
reset_index()重置 DataFrame 的索引
transpose()转置 DataFrame(行列交换)
import pandas as pd# 创建 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 30, 35, 40],'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
df = pd.DataFrame(data)# 查看前两行数据
print('--------查看前两行数据--------')
print(df.head(2))# 查看 DataFrame 的基本信息
print('--------查看 DataFrame 的基本信息--------')
print(df.info())# 获取描述统计信息
print('--------获取描述统计信息--------')
print(df.describe())# 按年龄排序
print('--------按年龄排序--------')
df_sorted = df.sort_values(by='Age', ascending=False)
print(df_sorted)# 选择指定列
print('--------选择指定列--------')
print(df[['Name', 'Age']])# 按索引选择行
print('--------按索引选择行--------')
print(df.iloc[1:3])  # 选择第二到第三行(按位置)# 按标签选择行
print('--------按标签选择行--------')
print(df.loc[1:2])  # 选择第二到第三行(按标签)# 计算分组统计(按城市分组,计算平均年龄)
print('--计算分组统计(按城市分组,计算平均年龄)--')
print(df.groupby('City')['Age'].mean())# 处理缺失值(填充缺失值)
df['Age'] = df['Age'].fillna(30)# 导出为 CSV 文件
df.to_csv('output.csv', index=False)

 

相关文章:

Python Pandas(3):DataFrame

1 介绍 DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由…...

使用通义灵码 ai编程 来提高开发效率

1、我们先新建一个Hello,world的vue3项目(快速上手 | Vue.js) 创建好以后,运行以下界面: about界面如下,现在我们让灵码给我们修改一下这个字体的颜色及加点其它的样式: 2、先选中样式&#xf…...

【OpenCV】入门教学

🏠大家好,我是Yui_💬 🍑如果文章知识点有错误的地方,请指正!和大家一起学习,一起进步👀 🚀如有不懂,可以随时向我提问,我会全力讲解~ &#x1f52…...

大数据项目4:基于spark的智慧交通项目设计与实现

项目概述 项目直达 www.baiyuntu.com 随着交通数据的快速增长,传统的交通管理方式已无法满足现代城市的需求。交通大数据分析系统通过整合各类交通数据,利用大数据技术解决交通瓶颈问题,提升交通管理效率。本项目旨在通过大数据技术&#…...

netcore openTelemetry+prometheus+grafana

一、netcore项目 二、openTelemetry 三、prometheus 四、grafana添加Dashborad aspire/src/Grafana/dashboards at main dotnet/aspire GitHub 导入:aspnetcore.json和aspnetcore-endpoint.json 效果:...

Spring Boot接入Deep Seek的API

1,首先进入deepseek的官网:DeepSeek | 深度求索,单击右上角的API开放平台。 2,单击API keys,创建一个API,创建完成务必复制!!不然关掉之后会看不看api key!!&…...

Git、Github和Gitee完整讲解:丛基础到进阶功能

第一部分:Git 是什么? 比喻:Git就像是一本“时光机日记本” 每一段代码的改动,Git都会帮你记录下来,像是在写日记。如果出现问题或者想查看之前的版本,Git可以带你“穿越回过去”,找到任意时间…...

MyBatis的工作流程是怎样的?

大家好,我是锋哥。今天分享关于【MyBatis的工作流程是怎样的?】面试题。希望对大家有帮助; MyBatis的工作流程是怎样的? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 MyBatis 的工作流程可以分为几个主要的步骤&…...

Maven 安装配置(完整教程)

文章目录 一、Maven 简介二、下载 Maven三、配置 Maven3.1 配置环境变量3.2 Maven 配置3.3 IDEA 配置 四、结语 一、Maven 简介 Maven 是一个基于项目对象模型(POM)的项目管理和自动化构建工具。它主要服务于 Java 平台,但也支持其他编程语言…...

分享如何通过Mq、Redis、XxlJob实现算法任务的异步解耦调度

一、背景 1.1 产品简介 基于大模型塔斯,整合传统的多项能力(NLP、OCR、CV等),构建以场景为中心的新型智能文档平台。通过文档审阅,实现结构化、半结构化和非结构化文档的信息获取、处理及审核,同时基于大…...

发布:大彩科技DN系列2.8寸高性价比串口屏发布!

一、产品介绍 该产品是一款2.8寸的工业组态串口屏,采用2.8寸液晶屏,分辨率为240*320,支持电阻触摸、电容触摸、无触摸。可播放动画,带蜂鸣器,默认为RS232通讯电平,用户短接屏幕PCB上J5短接点即可切换为TTL电…...

集合类不安全问题

ArrayList不是线程安全类,在多线程同时写的情况下,会抛出java.util.ConcurrentModificationException异常 解决办法: 1.使用Vector(ArrayList所有方法加synchronized,太重) 2.使用Collections.synchronized…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之上传头像和新增收货地址

🧸安清h:个人主页 🎥个人专栏:【Spring篇】【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🚀1.上传头像 -持久…...

AI知识库和全文检索的区别

1、AI知识库的作用 AI知识库是基于人工智能技术构建的智能系统,能够理解、推理和生成信息。它的核心作用包括: 1.1 语义理解 自然语言处理(NLP):AI知识库能够理解用户查询的语义,而不仅仅是关键词匹配。 …...

20240817 联想 笔试

文章目录 1、选择题1.11.21.31.41.51.61.71.81.91.101.111.121.131.141.151.161.171.181.191.202、编程题2.12.2岗位:Linux开发工程师 题型:20 道选择题,2 道编程题 1、选择题 1.1 有如下程序,程序运行的结果为 (D) #include <stdio.h>int main() {int k = 3...

IntelliJ IDEA 安装与使用完全教程:从入门到精通

一、引言 在当今竞争激烈的软件开发领域&#xff0c;拥有一款强大且高效的集成开发环境&#xff08;IDE&#xff09;是开发者的致胜法宝。IntelliJ IDEA 作为 JetBrains 公司精心打造的一款明星 IDE&#xff0c;凭借其丰富多样的功能、智能精准的代码提示以及高效便捷的开发工…...

【JVM详解一】类加载过程与内存区域划分

一、简介 1.1 概述 JVM是Java Virtual Machine&#xff08;Java虚拟机&#xff09;的缩写&#xff0c;是通过在实际的计算机上仿真模拟各种计算机功能来实现的。由一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域等组成。JVM屏蔽了与操作系统平台相关…...

250207-MacOS修改Ollama模型下载及运行的路径

在 macOS 上&#xff0c;Ollama 默认将模型存储在 ~/.ollama/models 目录。如果您希望更改模型的存储路径&#xff0c;可以通过设置环境变量 OLLAMA_MODELS 来实现。具体步骤如下&#xff1a; 选择新的模型存储目录&#xff1a;首先&#xff0c;确定您希望存储模型的目标目录路…...

Win10 部署llama Factory 推荐教程和遇到的问题

教程 【大模型微调】使用Llama Factory实现中文llama3微调_哔哩哔哩_bilibili 大模型微调&#xff01;手把手带你用LLaMA-Factory工具微调Qwen大模型&#xff01;有手就行&#xff0c;零代码微调任意大语言模型_哔哩哔哩_bilibili 遇到问题解决办法 pytorch gpu国内镜像下载…...

如何在Android Studio中开发一个简单的Android应用?

Android Studio是开发Android应用的官方集成开发环境&#xff08;IDE&#xff09;&#xff0c;它提供了许多强大的功能&#xff0c;使得开发者能够高效地创建Android应用。如果你是Android开发的初学者&#xff0c;本文将引导你如何在Android Studio中开发一个简单的Android应用…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...