当前位置: 首页 > news >正文

【个人开发】cuda12.6安装vllm安装实践【内含踩坑经验】

1. 背景

vLLM是一个快速且易于使用的LLM推理和服务库。企业级应用比较普遍,尝试安装相关环境,尝试使用。

2. 环境

模块版本
python3.10
CUDA12.6
torch2.5.1
xformers0.0.28.post3
flash_attn2.7.4
vllm0.6.4.post1

2.1 安装flash_attn

具体选择什么版本,可参考:flash-attention保姆级安装教程
基于cuda跟torch的版本考虑,笔者选择如下版本

flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

安装命令

wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
MAX_JOBS=4 
pip install flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

2.2 安装vllm

参考:vLLM环境安装与运行实例【最新版(0.6.4.post1)】

pip3 install vllm==0.6.4.post1 --extra-index-url https://download.pytorch.org/whl/cu121 -i https://pypi.tuna.tsinghua.edu.cn/simple
2.2.1 坑1: 报错:libcudart.so.11.0: cannot open shared object file: No such file or directory

在这里插入图片描述

这个文件应该指向的是cuda的文件。到cuda的路径看看【笔者cuda的路径为:/usr/local/cuda/lib64】

在这里插入图片描述
发现确实只有libcudart.so.12。没有libcudart.so.11。
那么这里只有两种解决方案,要么重装cuda,要么重装vllm。

借鉴楼上大佬的经验参考,将vllm 版本降至0.6.4.post1即可解决。

3. 启动服务

3.1 vllm启动服务

使用vllm启动模型/root/Qwen2.5-7B-Instruct。

参考文章:使用 vllm 搭建推理加速大模型服务

python -m vllm.entrypoints.openai.api_server --model /root/Qwen2.5-7B-Instruct  --served-model-name Qwen2.5-7B-Instruct --max-model-len=2048

在这里插入图片描述

3.2 vllm一次性调用

# vllm_model.py
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import os
import json# 自动下载模型时,指定使用modelscope。不设置的话,会从 huggingface 下载
os.environ['VLLM_USE_MODELSCOPE']='True'def get_completion(prompts, model, tokenizer=None, max_tokens=512, temperature=0.8, top_p=0.95, max_model_len=2048):stop_token_ids = [151329, 151336, 151338]# 创建采样参数。temperature 控制生成文本的多样性,top_p 控制核心采样的概率sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_tokens, stop_token_ids=stop_token_ids)# 初始化 vLLM 推理引擎llm = LLM(model=model, tokenizer=tokenizer, max_model_len=max_model_len,trust_remote_code=True)outputs = llm.generate(prompts, sampling_params)return outputsif __name__ == "__main__":    # 初始化 vLLM 推理引擎model='/root/Qwen2.5-7B-Instruct' # 指定模型路径# model="qwen/Qwen2-7B-Instruct" # 指定模型名称,自动下载模型tokenizer = None# 加载分词器后传入vLLM 模型,但不是必要的。# tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) text = ["你好,帮我介绍一下什么是大语言模型。","可以给我将一个有趣的童话故事吗?"]# messages = [#     {"role": "system", "content": "你是一个有用的助手。"},#     {"role": "user", "content": prompt}# ]# 作为聊天模板的消息,不是必要的。# text = tokenizer.apply_chat_template(#     messages,#     tokenize=False,#     add_generation_prompt=True# )outputs = get_completion(text, model, tokenizer=tokenizer, max_tokens=512, temperature=1, top_p=1, max_model_len=2048)# 输出是一个包含 prompt、生成文本和其他信息的 RequestOutput 对象列表。# 打印输出。for output in outputs:prompt = output.promptgenerated_text = output.outputs[0].textprint(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

效果如下:
在这里插入图片描述

4. 模型调用

curl http://localhost:8000/v1/completions \-H "Content-Type: application/json" \-d '{"model": "Qwen2.5-7B-Instruct","prompt": "请基于如下的知识点,帮忙总结一下该病例的关键信息点。","max_tokens": 50,"temperature": 0}'

在这里插入图片描述
参考文章:
1.flash-attention保姆级安装教程
2.vLLM环境安装与运行实例【最新版(0.6.4.post1)】
3.使用 vllm 搭建推理加速大模型服务
4.[大模型]Qwen2-7B-Instruct vLLM 部署调用

以上,结束。

相关文章:

【个人开发】cuda12.6安装vllm安装实践【内含踩坑经验】

1. 背景 vLLM是一个快速且易于使用的LLM推理和服务库。企业级应用比较普遍,尝试安装相关环境,尝试使用。 2. 环境 模块版本python3.10CUDA12.6torch2.5.1xformers0.0.28.post3flash_attn2.7.4vllm0.6.4.post1 2.1 安装flash_attn 具体选择什么版本&…...

ASP.NET Core SignalR身份验证

在需要登录才能访问的集线器类上或者方法上添加[Authorize]。也支持角色等设置,可以设置到Hub或者方法上。 配置好User、Role、MyDbContext、JWTSettings、IdentityHelper Program.cs using SignaIR的基本使用; using Scalar.AspNetCore; using Identity框架; us…...

微信小程序(第一集)

app.json {// 定义小程序的所有页面路径,数组中的第一个页面是首页"pages": ["pages/index/index", // 首页"pages/logs/logs" // 日志页面],// 设置小程序的全局窗口外观(比如导航栏和背景颜色)"wind…...

为什么细胞是圆的?

从受力方面分析 以细胞重心 O O O为原点,建立平面直角坐标系 x O y xOy xOy, x 、 y x、y x、y正半轴交细胞于A,B 设 f θ ∑ ∀ P ∈ C , ∠ P O A θ P O ∑ ∀ P ∈ C , ∠ P O A θ 1 f_\theta\dfrac{\sum_{\forall P\in C\ \ , \an…...

游戏引擎学习第96天

讨论了优化和速度问题,以便简化调试过程 节目以一个有趣的类比开始,提到就像某些高端餐厅那样,菜单上充满了听起来陌生或不太清楚的描述,需要依靠服务员进一步解释。虽然这听起来有些奇怪,但实际上,它反映…...

本地优先的分布式锁实现

本地优先分发锁旨在通过使用本地锁优先来减少分发锁服务器的并发压力。如图1所示,当请求想要获取分发锁时,该请求必须首先获取JVM锁(本地锁)。通过这样做,对于特定的锁密钥,分布式锁服务器将只承载固定数量…...

基于知乎平台的“开源AI智能名片2 + 1链动模式S2B2C商城小程序”引流策略研究

摘要:本文聚焦于如何借助知乎平台的高权重及优质用户特性,对“开源AI智能名片2 1链动模式S2B2C商城小程序”进行有效引流。通过深入分析知乎平台的用户特点、引流规则,并结合具体的引流方法,旨在为相关项目在知乎平台实现高效用户…...

DeepSeek-Coder系列模型:智能编程助手的未来

文章目录 一、模型架构与核心功能1. 模型架构2. 核心功能 二、多语言支持与代码生成1. Python代码生成2. Java代码生成3. C代码生成4. JavaScript代码生成 三、仓库级代码理解1. 代码结构分析2. 上下文理解 四、FIM填充技术1. 函数自动填充2. 代码补全 五、应用场景1. 代码补全…...

FPGA开发技能(10)热电偶测温ADS1118方案

文章目录 1.热电偶原理2.ADS1118方案2.1ADS介绍2.2原理设计2.3实物连接图2.4测温原理 3.误差校准3.1查表法3.2冷端补偿法 4.SPI操作时序5.传送门 1.热电偶原理 两个不同材料的金属线一端在同一结点连接,另一端放在被测温点,则二者会产生一定的压差&…...

如何优化网站结构以促进快速收录?

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/104.html 优化网站结构以促进快速收录,可以从以下几个方面入手: 一、合理规划页面结构 扁平化结构:采用扁平化的网站结构,减少层级&#xf…...

算法-动态规划-0-1背包问题(二维0-1背包,背包求方案数,求背包具体方案)

概念 背包问题(Knapsack Problem)是算法领域的经典组合优化问题,在资源分配等场景有广泛应用,以下从定义、常见类型、解决方法等方面介绍: 定义 给定一组物品,每个物品都有自己的重量和价值,…...

位运算算法篇:位运算实现加减乘除

位运算算法篇:位运算实现加减乘除 那么我们想必对加减乘除这些数学计算并不陌生,但是对于我们的计算机来说,由于机器只能识别二进制的语言,那么我们底层的数据都是以二进制的形式存在,那么我们CPU的计算器的加减乘除运…...

【故障处理】ORA-19849 ORA-19612 0RA-17627 ORA-03114

【故障处理】ADG duplicate 异常中断ORA-19849 ORA-19612 0RA-17627 ORA-03114 Corrupt block 84629 found during reading backup piece 一、概述二、报错信息三、报错原因四、解决方法五、其他类似报错5.1 报错信息 一、概述 部署adg执行duplicate异常中断,RMAN过…...

【MQ】Spring3 中 RabbitMQ 的使用与常见场景

一、初识 MQ 传统的单体架构,分布式架构的同步调用里,无论是方法调用,还是 OpenFeign 难免会有以下问题: 扩展性差(高耦合,需要依赖对应的服务,同样的事件,不断有新需求&#xff0…...

jupyterLab插件开发

jupyter lab安装、配置: jupyter lab安装、配置教程_容器里装jupyterlab-CSDN博客 『Linux笔记』服务器搭建神器JupyterLab_linux_布衣小张-腾讯云开发者社区 Jupyter Lab | 安装、配置、插件推荐、多用户使用教程-腾讯云开发者社区-腾讯云 jupyterLab插件开发教…...

拯救者Y9000P双系统ubuntu22.04安装4070显卡驱动

拯救者Y9000P双系统ubuntu22.04安装4070显卡驱动 1. 前情: 1TB的硬盘,分了120G作ubuntu22.04。/boot: 300MB, / : 40GB, /home: 75G, 其余作swap area。 2. 一开始按这个教程:对我无效 https://blog.csdn.net/Eric_xkk/article/details/1…...

QT-常见问题

1. C(特别是 Qt)开发中,内存优化的方法 1. 合理管理对象生命周期,使用智能指针 Qt 提供了 QScopedPointer 和 QSharedPointer 来管理对象生命周期,避免手动 delete 导致的内存泄漏。 2. 减少内存占用 QString、QBy…...

如何通过腾讯 ima.copilot 训练自己的知识库

如何通过腾讯 ima.copilot 训练自己的知识库 在信息爆炸的时代,拥有一个专属的知识库,能让我们在学习、工作中快速获取所需信息,极大地提升效率。腾讯推出的 AI 智能工作台 ima.copilot,为我们打造个人知识库提供了便利。今天&am…...

关于近期我的交流之深度思考DeepSeek归纳总结

以下内容我摘自昨天 2025-2-9 群里的讨论,只涉及我的观点内容,会让DeepSeek进行深度思考 抢财猫: 能提出一个好问题不容易的,问题边界包含了所有认知,提问题需要能力的 抢财猫: 每个人都相当于一个大模型,自己给自己投入了多少算力,训练了多少数据参数,自己心里有数…...

智能生鲜配送管理系统:生鲜及快消品行业的数字化转型利器

在生鲜及快消品行业,高效的供应链管理是企业成功的关键。随着科技的不断进步,越来越多的企业开始采用智能化管理软件来提升运营效率、降低成本并优化客户体验。今天,我们就来了解一下这类智能生鲜配送管理系统的核心功能和技术优势&#xff0…...

DeepSeek和ChatGPT的优劣或者区别(答案来DeepSeek和ChatGPT)

DeepSeek的答案 DeepSeek与ChatGPT作为当前两大主流AI模型,在架构设计、性能表现、应用场景等方面存在显著差异,以下从多个维度进行对比分析: 一、架构与训练效率 架构设计 DeepSeek:采用混合专家(MoE)框架…...

【C语言标准库函数】标准输入输出函数详解[5]:格式化文件输入输出

目录 一、fprintf() 函数 1.1. 函数简介 1.2. fprintf使用场景 1.3. 注意事项 1.4. 示例 二、fscanf() 函数 2.1. 函数简介 2.2. fscanf使用场景 2.3. 注意事项 2.3. 示例 三、总结 在 C 语言中,格式化文件输入输出函数能够让我们以特定的格式对文件进行…...

[概率论] 随机变量

Kolmogorov 定义的随机变量是基于测度论和实变函数的。这是因为随机变量的概念需要精确地定义其可能的取值、发生的概率以及这些事件之间的依赖关系。 测度论:在数学中,测度论是用来研究集合大小的理论,特别是无穷可数集和无界集的大小。对于…...

中国通信企业协会通信网络安全服务能力评定安全设计与集成服务能力评定三级要求准则...

安全设计与集成服务能力三级是通信网络安全服务能力评定安全设计与集成服务能力评定的最高等级,所需的要求也会更加严苛,不仅要满足安全设计与集成服务二级能力要求的所有条款,还要满足以下要求: 规模与资产要求 1)单位正规编制员…...

【C++语言】类和对象(下)

一、再谈构造函数 1.1 构造函数体赋值 在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。 class Date { public:Date(int year, int month, int day){_year year;_month month;_day day;} private:int _year;int _mont…...

【Spring】什么是Spring?

什么是Spring? Spring是一个开源的轻量级框架,是为了简化企业级开发而设计的。我们通常讲的Spring一般指的是Spring Framework。Spring的核心是控制反转(IoC-Inversion of Control)和面向切面编程(AOP-Aspect-Oriented Programming)。这些功能使得开发者…...

全面理解-c++11中的智能指针

在 C 中,智能指针(Smart Pointers) 是用于自动管理动态分配内存的类模板,遵循 RAII(Resource Acquisition Is Initialization) 原则,确保资源在生命周期结束时被正确释放,避免内存泄…...

【jmeter】在windows中,创建的变量,在jmeter中,读取变量失败的问题,路径问题

1.0 在windows中,jmeter读取变量失败 在路径配置的时候,配置按照D:\FtpDownload\${file_name}运行之后,下载的文件,文件名出现问题 \取消了$符号的意义,所以需要更改路径 D:\\FtpDownload\\${file_name}...

【CubeMX-HAL库】STM32F407—无刷电机学习笔记

目录 简介: 学习资料: 跳转目录: 一、工程创建 二、板载LED 三、用户按键 四、蜂鸣器 1.完整IO控制代码 五、TFT彩屏驱动 六、ADC多通道 1.通道确认 2.CubeMX配置 ①开启对应的ADC通道 ②选择规则组通道 ③开启DMA ④开启ADC…...

使用 POI-TL 和 JFreeChart 动态生成 Word 报告

文章目录 前言一、需求背景二、方案分析三、 POI-TL JFreeChart 实现3.1 Maven 依赖3.3 word模板设置3.2 实现代码 踩坑 前言 在开发过程中,我们经常需要生成包含动态数据和图表的 Word 报告。本文将介绍如何结合 POI-TL 和 JFreeChart,实现动态生成 W…...