八一南昌起义纪念塔手绘图纸:一部凝固的工程史诗
在南昌美术馆的玻璃展柜中,泛黄的八一南昌起义纪念塔手绘图纸正无声述说着一段工程奇迹。这些诞生于上世纪七十年代的图纸,以0.05毫米的针管笔触勾勒出总高53.6米的纪念碑,在硫酸纸上构建的坐标网格精确到毫米级,每一根结构线都暗含着材料力学的智慧结晶。
一、工程构造中的精妙法则
在正立面图纸的西南角,设计师用红蓝双色标注出混凝土标号与钢筋配比,C30混凝土的抗压强度与HRB335螺纹钢的屈服强度形成完美力学耦合。倾斜11.5度的塔身并非简单的美学考量,而是通过结构力学计算得出的最佳抗风压角度,使建筑物在流体力学层面实现了空气动力学的微妙平衡。
基础结构图中,直径1.2米的钻孔灌注桩呈梅花状分布,桩端嵌入中风化泥质砂岩层不少于3米的设计,展现出对南昌地区地质构造的深刻理解。这些深埋地下的混凝土根系,经过四十余年地质运动考验,沉降观测数据始终控制在5毫米以内。
二、传统营造技艺的现代转译
檐口部分的斗拱节点详图揭示了传统木作技艺的混凝土转译,28组悬挑构件通过预应力张拉形成自平衡体系。图纸边缘的计算公式显示,设计者采用极限状态设计法对每个悬挑单元进行荷载组合验算,将220kg/m²的风荷载转化为精确的配筋参数。
在缺乏CAD软件的时代,设计团队创造性地运用透视投影法手绘三维效果图。剖面图上的阴影系数标注,精确到太阳高度角28°时的投影长度,这种基于天文历法的光影控制技术,确保了纪念碑在特定时刻能形成庄严的光影构图。
三、劳动智慧的工程哲学
图纸中的材料表堪称计划经济时代的工程管理范本,3270立方混凝土、480吨钢材的配给方案精确对应建设周期。施工组织设计图上,标注着基于运筹学原理的物料运输路线,将塔吊回转半径控制在55米最佳效能区,展现出惊人的空间优化能力。
在结构计算书手稿中,工程师用拉普拉斯变换求解微分方程,模拟地震波作用下建筑物的动力响应。这些布满Γ函数与贝塞尔方程的计算过程,最终物化为8度抗震设防的实体建筑,其抗震理念至今仍具参考价值。
这些泛黄的图纸不仅是技术档案,更是中国工程智慧的物化见证。当3D扫描仪测得图纸尺寸误差小于0.3‰时,我们恍然发现,所谓"工匠精神"正是这种将工程哲学注入每一道墨线的执着。在参数化设计盛行的今天,回望这些手绘的力学诗篇,恰是提醒我们:真正的工程智慧,永远建立在对物理本质的深刻理解与对人本价值的永恒追求之上。

八一南昌起义纪念塔正立面图纸

八一南昌起义纪念塔背立面图纸

八一南昌起义纪念塔侧立面图纸

顶端国旗图纸
相关文章:
八一南昌起义纪念塔手绘图纸:一部凝固的工程史诗
在南昌美术馆的玻璃展柜中,泛黄的八一南昌起义纪念塔手绘图纸正无声述说着一段工程奇迹。这些诞生于上世纪七十年代的图纸,以0.05毫米的针管笔触勾勒出总高53.6米的纪念碑,在硫酸纸上构建的坐标网格精确到毫米级,每一根结构线都暗…...
[hgame 2025 ]week1 pwn/crypto
一共两周,第一周说难也不难说简单也不简单。 pwn counting petals 数组v7长度17,输入16时v7[161]会发生溢出,溢出到v8,v9,将其改大,会输出canary和libc_start_main_ret的地址。第2次进来覆盖到返回地址写上ROP from pwn import…...
python 获取smpl身高 fbx身高
目录 python 获取smpl身高 读取fbx,获取fbx mesh身高 python 获取smpl身高 video_segments = pickle.load(open(smpl_pkl_path, "rb"))if isinstance(video_segments, tuple):video_segments = video_segments[0]scene = bpy.data.scenes[Scene]ob, obname, arm_o…...
实战教程:如何利用DeepSeek结合深度学习与NLP技术实现跨模态搜索与个性化推荐
跨模态搜索与个性化推荐是当前人工智能领域中的热门话题,DeepSeek作为结合深度学习与自然语言处理(NLP)技术的创新平台,提供了在多模态数据间进行搜索与推荐的强大能力。本教程将带你一步步实现基于DeepSeek的跨模态搜索和个性化推荐,详细讲解整个过程的实现方法,从数据准…...
计算机毕业设计Python+卷积神经网络租房推荐系统 租房大屏可视化 租房爬虫 hadoop spark 58同城租房爬虫 房源推荐系统
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
目标检测模型性能评估:mAP50、mAP50-95、Precision 和 Recall 及测试集质量的重要性
目标检测评估全解析:从核心指标到高质量测试集构建 目标检测技术在计算机视觉领域发挥着至关重要的作用,无论是自动驾驶、安防监控,还是医学影像处理,目标检测算法的性能评估都需要依赖一系列精确且科学的评估指标。而测试集的构建…...
AnyPlace:学习机器人操作的泛化目标放置
25年2月来自多伦多大学、Vector Inst、上海交大等机构的论文“AnyPlace: Learning Generalized Object Placement for Robot Manipulation”。 由于目标几何形状和放置的配置多种多样,因此在机器人任务中放置目标本身就具有挑战性。为了解决这个问题,An…...
2025icpc(Ⅱ)网络赛补题 GL
题意: 给定Alice和Bob的每一轮的概率p0,p1 给定Alice和Bob的初始数字x,y。 对于每一轮: 如果Alice获胜,则bob的数字y需要减去x。(如果y≤0,Alice获胜)如果Bob获胜,则Alice的数字x需要减去y。…...
51c大模型~合集112
我自己的原文哦~ https://blog.51cto.com/whaosoft/13267449 #Guidance-Free Training (GFT) 无需引导采样,清华大学提出视觉模型训练新范式 引导采样 Classifier-Free Guidance(CFG)一直以来都是视觉生成模型中的关键技术。然而最近&am…...
Rust 文件读取:实现我们的 “迷你 grep”
1. 准备示例文件 首先,在项目根目录(与 Cargo.toml 同级)下新建一个名为 poem.txt 的文件。示例内容可参考 Emily Dickinson 的诗: Im nobody! Who are you? Are you nobody, too? Then theres a pair of us — dont tell! Th…...
【Unity3D】Jenkins Pipeline流水线自动构建Apk
目录 一、准备阶段 二、创建Pipeline流水线项目 三、注意事项 一、准备阶段 1、安装tomcat 10.0.5 Index of apache-local/tomcat/tomcat-10 2、安装jdk 17 Java Archive Downloads - Java SE 17.0.13 and later 3、下载Jenkins 2.492.1 (.war)包 War Jenkins Packa…...
信息收集-Web应用备案产权Whois反查域名枚举DNS记录证书特征相似查询
知识点: 1、信息收集-Web应用-机构产权&域名相关性 2、信息收集-Web应用-DNS&证书&枚举子域名 企业信息 天眼查 https://www.tianyancha.com/ 企业信息 小蓝本 https://www.xiaolanben.com/ 企业信息 爱企查 https://aiqicha.baidu.com/ 企业信息 企查…...
结合实际讲NR系列2—— SIB1
这是在基站抓取的sib1的一条信令 L3MessageContent BCCH-DL-SCH-Messagemessagec1systemInformationBlockType1cellSelectionInfoq-RxLevMin: -64q-QualMin: -19cellAccessRelatedInfoplmn-IdentityListPLMN-IdentityInfoplmn-IdentityListPLMN-IdentitymccMCC-MNC-Digit: 4MC…...
绿虫仿真软件如何预测组件衰减对收益的影响?
绿虫仿真软件通过其精细化的算法模型,能够有效预测组件衰减对光伏电站收益的影响,主要体现在以下几个方面: 1. 数据基础与模型构建 历史数据分析:绿虫软件整合了长达20年的历史数据,涵盖气象、地理、组件型号、逆变器…...
本地部署DeepSeek集成VSCode创建自己的AI助手
文章目录 安装Ollama和CodeGPT安装Ollama安装CodeGPT 下载并配置DeepSeek模型下载聊天模型(deepseek-r1:1.5b)下载自动补全模型(deepseek-coder:1.3b) 使用DeepSeek进行编程辅助配置CodeGPT使用DeepSeek模型开始使用AI助手 ✍️相…...
07贪心 + 动态规划(D1_基础学习)
目录 讲解一:贪心算法 一、什么是贪心算法? 二、贪心算法的应用场景 三、使用Java代码实现贪心算法 四、知识小结 -------------------------------- 讲解二:动态规划算法 一、什么是动态规划算法 二、动态规划算法求解问题需要具备的…...
redis之数据库
文章目录 服务器中的数据库切换数据库数据库键空间读写键空间时的维护操作 设置键的生存时间或过期时间保存过期时间过期键的判定过期键删除策略清性删除策略的实现定期删除策略的实现 总结 服务器中的数据库 Redis服务器将所有数据库都保存在服务器状态redis.h/redisServer结…...
【竞技宝】电竞世界杯:无畏契约首次入选正式项目!
北京时间2月12日,电竞世界杯基金会(EWCF)与知名游戏开发商拳头游戏(Riot Games)在近日共同宣布达成三年合作伙伴关系。同时,三大顶级电竞项目——《英雄联盟》《英雄联盟:云顶之弈》(…...
Golang GORM系列:GORM 高级查询教程
有效的数据检索是任何程序功能的基础。健壮的Go对象关系映射包(称为GORM)除了标准的CRUD操作之外,还提供了复杂的查询功能。这是学习如何使用GORM进行高级查询的综合资源。我们将涵盖WHERE条件、连接、关联、预加载相关数据,甚至涉…...
智能GUI Agent是什么,有什么应用领域
智能GUI Agent是什么 研究背景与目的:GUI长期主导人机交互,LLM特别是多模态模型的出现,为GUI自动化带来变革,催生了基于LLM的GUI智能体。这些智能体可理解自然语言指令,处理复杂GUI元素并执行操作,改变了用户与软件交互方式。论文旨在梳理该领域发展脉络,剖析关键要素,…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...
算术操作符与类型转换:从基础到精通
目录 前言:从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符:、-、*、/、% 赋值操作符:和复合赋值 单⽬操作符:、--、、- 前言:从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
