ollama实践笔记
目录
一、linux安装文件命令:
二、启动ollama
三、linux 如何把ollama serve做为服务方式启动
四、安装deepseek-r1
五、如何在网页中使用ollama?
5.1 安装Open WebUI【不推荐】
5.2 安装ollama-webui-lite
六、Ubuntu安装docker、只需要一句话即可
七、deepseekV3安装
八、通过API的方式请求Ollama
九、通过Postman API的方式请求Ollama 集成的模型API
git仓库地址:https://github.com/ollama/ollama.git
官网地址:https://github.com/ollama/ollama
一、linux安装文件命令:
curl -fsSL https://ollama.com/install.sh | sh

二、启动ollama
ollama serve

三、linux 如何把ollama serve做为服务方式启动
把下面的代码写到shell脚本中,运行脚本就可以做为后台服务了。nohup ollama serve > /var/log/ollama.log 2>&1 &
四、安装deepseek-r1
安装和运行都是相同的命令:
(1)首次运行就是安装;(2)再次运行就是使用
ollama run deepseek-r1

五、如何在网页中使用ollama?
5.1 安装Open WebUI【不推荐】
Ollama的网页端是通过Open WebUI实现的,它提供了一个清晰且用户友好的聊天界面,使得与大型语言模型的交互变得直观1。用户可以通过Open WebUI与Ollama模型进行交互,进行对话和管理模型。
【这个特别慢!!!!不建议用这个】
git clone https://github.com/open-webui/open-webui.git官方地址:https://github.com/open-webui/open-webui
5.2 安装ollama-webui-lite
仓库:GitHub - ollama-webui/ollama-webui-lite: This repo is no longer maintained, please use our main Open WebUI repo.
(1)安装nodejs:
sudo apt install nodejs
node -v
(2)安装npm
sudo apt install npm
npm -v
注意:node版本要安装最新的,否则无法运行,参考官方,安装最新的node
Node.js — Download Node.js®
(3)映射端口:
网站端口:3000
ssh -CNg -L 3000:127.0.0.1:3000 root@connect.westb.seetacloud.com -p 34016
ollama端口:11434
ssh -CNg -L 11434:127.0.0.1:11434 root@connect.westb.seetacloud.com -p 34016
参考安装文章:LLama3本地部署安装_llama安装-CSDN博客
(4)启动网站
npm run dev
六、Ubuntu安装docker、只需要一句话即可
apt install docker.io
docker --version
Docker version 24.0.7, build 24.0.7-0ubuntu2~22.04.1
安装docker好像也没啥用
七、deepseekV3安装
八、通过API的方式请求Ollama
curl --location 'http://localhost:11434/api/generate' \
--header 'Content-Type: text/plain' \
--data '{"model":"deepseek-r1","prompt": "请分别翻译成中文、韩文、日文 -> Meta Llama 3: 如何变得很有钱?","stream": false
}'
九、通过Postman API的方式请求Ollama 集成的模型API

相关文章:
ollama实践笔记
目录 一、linux安装文件命令: 二、启动ollama 三、linux 如何把ollama serve做为服务方式启动 四、安装deepseek-r1 五、如何在网页中使用ollama? 5.1 安装Open WebUI【不推荐】 5.2 安装ollama-webui-lite 六、Ubuntu安装docker、只需要一句话…...
springCloud-2021.0.9 之 服务调服务 示例
文章目录 前言springCloud-2021.0.9 之 服务调服务 示例1. 主要用到的组件2. 效果3. 源码3.1. 服务A3.2. 服务B接受接口 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。 而且听说点赞的人每…...
如何使用DHTMLX Scheduler的拖放功能,在 JS 日程安排日历中创建一组相同的事件
DHTMLX Scheduler 是一个全面的调度解决方案,涵盖了与规划事件相关的广泛需求。假设您在我们的 Scheduler 文档中找不到任何功能,并且希望在我们的 Scheduler 文档中看到您的项目。在这种情况下,很可能可以使用自定义解决方案来实现此类功能。…...
QxOrm生成json
下载Qxorm-1.5版本 使用vs打开项目,直接生成即可: lib目录中会生成dll和lib文件 新建Qt项目使用Qxorm: 将QxOrm中上面三个目录拷贝到新建的Qt项目中 pro文件添加使用QxOrm第三方库 INCLUDEPATH $$PWD/include/ LIBS -L"$$PWD/lib" LIBS…...
XS9922B(CHIPUP) 模拟高清 寄存器手册 XS9922B 四通道 多合一模拟高清解码芯片
XS9922B 是一款 4 通道模拟复合视频解码芯片,支持 HDCCTV 高清协议和 CVBS 标 清协议,视频制式支持 720P/1080P 高清制式和 960H/D1 标清制式。芯片将接收到的高清 模拟复合视频信号经过模数转化,视频解码以及 2D 图像处理之后…...
Django创建超管用户
在 Django 中创建超级用户(superuser)可以通过命令行工具 createsuperuser 完成。以下是具体步骤: 1. 确保已进行数据库迁移 在创建超级用户前,确保已执行数据库迁移: python manage.py migrate 2. 创建超级用户 …...
基于Kotlin中Flow扩展重试方法
最近项目中统一采用Kotlin的Flow来重构了网络请求相关代码。 目前的场景是,接口在请求的时候需要一个accessToken值,因为此值会过期或者不存在,需要刷新,因此最终方案是在使用Flow请求的时候先获取accessToken值然后再进行接口请求…...
好好说话:深度学习扫盲
大创项目是和目标检测算法YOLO相关的,浅浅了解了一些有关深度学习的知识。在这里根据本人的理解做一些梳理。 深度学习是什么? 之前经常听到AI,机器学习,深度学习这三个概念,但是对于三者的区别一直很模糊。 AI&…...
【状态空间方程】对于状态空间方程矩阵D≠0时的状态反馈与滑模控制
又到新的一年啦,2025新年快乐~。前几个月都没更新,主要还是因为不能把项目上的私密工作写进去,所以暂时没啥可写的。最近在山里实习,突然想起年前遗留了个问题一直没解决,没想到这两天在deepseek的加持下很快解决了&am…...
腾讯大数据基于 StarRocks 的向量检索探索
作者:赵裕隆,腾讯大数据研发工程师 本文整理自腾讯大数据工程师在 StarRocks 年度峰会上的分享,深入探讨了向量检索技术的原理与应用。此功能已应用到腾讯内部多个场景,引入 StarRocks 后,业务不仅不需要维护多套数据库…...
Linux系统调用
文章目录 系统调用和POSIX标准系统调用表程序直接访问系统调用新增系统调用 在linux中,内核空间和用户空间之间增加了一个中间层——系统调用层,如下图: 系统内调用层主要作用: 为用户空间程序提供一层硬件抽象接口。保证系统稳定…...
如何在Servlet容器中使用HttpServletResponse?
HttpServletResponse 是 Java Servlet API 中的一个接口,它代表了服务器对客户端的响应。通过 HttpServletResponse 对象,可以设置响应的状态码、发送数据到客户端(如 HTML 页面、文件等)、添加响应头信息等。下面是如何在 Servle…...
SpringCloud - Seata 分布式事务
前言 该博客为Sentinel学习笔记,主要目的是为了帮助后期快速复习使用 学习视频:7小快速通关SpringCloud 辅助文档:SpringCloud快速通关 源码地址:cloud-demo 一、简介 官网:https://seata.apache.org/zh-cn/ Seata …...
Ansible批量配置服务器免密登录步骤详解
一、准备工作 192.168.85.138 安装ansible,计划配置到139的免密 192.168.85.139 待配置免密 1. 生成SSH密钥对 在Ansible控制节点生成密钥对,用于后续免密认证: ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa 全部回车默认,无…...
互联网大厂中面试的高频计算机网络问题及详解
前言 哈喽各位小伙伴们,本期小梁给大家带来了互联网大厂中计算机网络部分的高频面试题,本文会以通俗易懂的语言以及图解形式描述,希望能给大家的面试带来一点帮助,祝大家offer拿到手软!!! 话不多说,我们立刻进入本期正题! 一、计算机网络基础部分 1 …...
人工智能时代下ai智能语音机器人如何以假乱真?
智能语音机器人若要达到以假乱真的效果,需要在以下几个关键方面不断提升: 一、语音合成技术 音色模拟 多维度采样 对大量真人语音样本进行多维度采样,包括不同年龄、性别、地域的人的语音。例如,采集不同年龄段男性从低沉到清亮…...
【橘子ES】Aggregations 聚合准备
一、聚合的概念 聚合文档 聚合区别于检索,检索是使用一系列条件把文档从es中搜索回来。但是聚合则是在搜索回来的文档的基础上进一步进行处理。 简单来说聚合就是将数据汇总为指标、统计数据或其他分析。聚合可以解决以下几类问题: 我的网站的平均加载…...
vue3读取webrtc-stream 视频流
一.首先下载webrtc-stream,方便自己本地搭建视频流服务 https://download.csdn.net/download/cyw8998/90373521 解压后,启动命令 webrtc-streamer.exe -H 127.0.0.1:8020 二.vue3代码如下 <template><h1>video</h1><video id&…...
springcloud集成gateway
本篇文章只介绍gateway模块的搭建步骤,并无gateway详细介绍 gateway详解请查看:SpringCloudGateway官方文档详解 前置处理 父模块中已指定版本 不知道如何选择版本看这篇: 手把手教你梳理springcloud与springboot与springcloudalibaba的版本…...
2025常用的SEO工具有哪些?
在互联网时代,如何让自己的网站或内容脱颖而出,成为许多企业和个人站长们最关注的问题。而在这个过程中,SEO(搜索引擎优化)作为一种有效的提升网站曝光度和吸引流量的手段,已经成为了网站运营的核心之一。对…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
