当前位置: 首页 > news >正文

变分边界详解

起因

当时看VAE论文时有这么一段,但是看完直接一头雾水,这都那跟哪,第一个公式咋做的变换就变出那么一堆。网上搜了很多博客都语焉不详,只好自己来写一篇,希望能解答后来人的疑惑。
在这里插入图片描述

公式1

参考文章:证据下界(ELBO)、EM算法、变分推断、变分自编码器(VAE)和混合高斯模型(GMM)
在这里插入图片描述
解释一下,我们之前都是用MLE计算损失, l o g p ( x ∣ θ ) logp(x|\theta) logp(xθ) l o g p θ ( x ) logp_{\theta}(x) logpθ(x)是一样的,数分和统计学写法习惯不同。第一种理解同上,可以结合VAE模型理解他的解释,这个解释比较抽象。
第二种理解是以信息论的角度,信息熵= E [ − l o g p θ ( x ) ] E[-logp_{\theta}(x)] E[logpθ(x)]。信息熵越小,说明系统越稳定,不确定程度越低。
L [ θ ] = a r g m i n θ E [ − l o g p θ ( x ) ] = a r g m a x θ E [ l o g p θ ( x ) ] L[\theta]=argmin_\theta E[-logp_{\theta}(x)]=argmax_\theta E[logp_{\theta}(x)] L[θ]=argminθE[logpθ(x)]=argmaxθE[logpθ(x)]
推导公式1:(引入一个隐变量z,z可以想象成VAE编码器计算出来的均值和方差的随机变量,对应分布q(z))
l o g p θ ( x ) = l o g p θ ( x , z ) − l o g p θ ( z ∣ x ) = l o g p θ ( x , z ) q ( z ) − l o g p θ ( z ∣ x ) q ( z ) logp_\theta(x) = logp_\theta(x,z) - logp_\theta(z|x)= log\frac{p_\theta(x,z)}{q(z)} - log\frac{p_\theta(z|x)}{q(z)} logpθ(x)=logpθ(x,z)logpθ(zx)=logq(z)pθ(x,z)logq(z)pθ(zx)
方程两边同时求期望:
具体推到过程看大佬的,白板机器学习
在这里插入图片描述

公式2

证明如下:
DK >= 0,所以可证公式2。
DK >= 0证明结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。
在这里插入图片描述

公式3

计算结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。
在这里插入图片描述

相关文章:

变分边界详解

起因 当时看VAE论文时有这么一段,但是看完直接一头雾水,这都那跟哪,第一个公式咋做的变换就变出那么一堆。网上搜了很多博客都语焉不详,只好自己来写一篇,希望能解答后来人的疑惑。 公式1 参考文章:证据…...

计算机毕业设计——Springboot餐厅点餐系统

🎉**欢迎来到琛哥的技术世界!**🎉 📘 博主小档案: 琛哥,一名来自世界500强的资深程序猿,毕业于国内知名985高校。 🔧 技术专长: 琛哥在深度学习任务中展现出卓越的能力&a…...

Dav_笔记14:优化程序提示 HINTs -3

查询转换的提示 以下每个提示都指示优化程序使用特定的SQL查询转换: ■NO_QUERY_TRANSFORMATION ■USE_CONCAT ■NO_EXPAND ■REWRITE和NO_REWRITE ■MERGE和NO_MERGE ■STAR_TRANSFORMATION和NO_STAR_TRANSFORMATION ■事实和NO_FACT ■UNNEST和NO_UNNEST…...

Makefile的用法及算法应用

编译的过程 算法:解决特定问题的求解步骤 算法的设计 1.正确性 语法正确合法的输入能得到合理的结果对非法的输入,给出满足要求的规格说明对精心选择,甚至刁难的测试都能正常运行,结果正确 2.可读性,便于交流&…...

伯克利 CS61A 课堂笔记 08 —— Strings and Dictionaries

本系列为加州伯克利大学著名 Python 基础课程 CS61A 的课堂笔记整理,全英文内容,文末附词汇解释。 目录 01 Strings 字符串 Ⅰ Strings are An Abstraction. Ⅱ Strings Literals have Three Forms Ⅲ String are Sequences 02 Dictionaries 字典 …...

机器学习 - 理解偏差-方差分解

为了避免过拟合,我们经常会在模型的拟合能力和复杂度之间进行权衡。拟合能力强的模型一般复杂度会比较高,容易导致过拟合。相反,如果限制模型的复杂度,降低其拟合能力,又可能会导致欠拟合。因此,如何在模型…...

Springboot引入(集成)Mybatis-plus

1、添加依赖 <!--mysql数据库--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.49</version></dependency><!--mybatis-plus--><dependency><groupI…...

stm32 lwip tcp服务端频繁接收连接失效问题解决(tcp_recved)

一、问题描述 最近用stmf429单片机作为TCP服务端遇到一个问题&#xff0c;就是客户端特别频繁的发送消息&#xff0c;过一段时间以后&#xff0c;客户端的请求不再被客户端接收到&#xff0c;而且服务器端监控的掉线回调函数也不会被调用&#xff0c;好像这个连接就凭空的消失…...

java项目之基于SSM会议管理系统的设计与实现源码(ssm+mysql)

项目简介 基于SSM会议管理系统的设计与实现实现了以下功能&#xff1a; 基于SSM会议管理系统的设计与实现的主要使用者分为&#xff1a;管理员登录后修改个人的密码。用户管理中&#xff0c;对公司内的用户进行管理&#xff0c;包括会议管理员和员工&#xff0c;管理部门信息…...

腿足机器人之二- 运动控制概览

腿足机器人之二运动控制概览 高层运动规划MPCRL 中层逆运动学和逆动力学底层执行器控制传感器校正 上一篇博客是腿足机器人的骨架和关节的机械和电气组件&#xff0c;关节不仅需要通过机械设计实现复杂的运动能力&#xff0c;还必须通过电子组件和控制系统来精确控制这些运动。…...

【MySQL】基础篇

1. MySQL中的NULL值是怎么存放的&#xff1f; MySQL的compact行格式中会用【NULL值列表】来标记值为NULL的列&#xff0c;NULL值不会存储在行格式中的真实数据部分。 NULL值列表会占用1字节空间&#xff0c;当表中所有字段都被定义成NOT NULL&#xff0c;行格式中就不会有NULL值…...

vscode环境搭建

目录 一、安装VSCode 二、安装Python 三、安装Anaconda&#xff08;可选&#xff0c;但推荐&#xff09; 四、安装深度学习相关库 五、配置VSCode 六、 结果可视化 一、安装VSCode 访问官网下载&#xff1a;从VSCode官方网站下载适合你操作系统的安装包。安装&#xff1a;运行安…...

tp whereOr用法2

有时候会用到多个whereOr 可以用闭包来完成查询 Db::name(table_name)->whereOr([[age,null,],[age,,]])->select();Db::name(table_name)->whereOr([[birthday,null,],[birthday,,]])->select();这两个是OR(或)关系 Db::name(table_name)->whereOr([[age,nul…...

前端面试题目---页面抖动的原因、如何避免、如何解决

前端页面抖动是一个常见且影响用户体验的问题&#xff0c;下面将从抖动发生的场景、解决办法以及预防措施三个方面进行详细阐述。 页面抖动发生的场景 1. 元素尺寸动态变化 图片加载&#xff1a;当页面中图片的宽高没有预先设定&#xff0c;在图片加载完成后&#xff0c;其实…...

Spring Boot整合DeepSeek实现AI对话(API调用和本地部署)

本篇文章会分基于DeepSeek开放平台上的API&#xff0c;以及本地私有化部署DeepSeek R1模型两种方式来整合使用。 本地化私有部署可以参考这篇博文 全面认识了解DeepSeek利用ollama在本地部署、使用和体验deepseek-r1大模型 Spring版本选择 根据Spring官网的描述 Spring AI是一…...

DeepSeek 的 API 服务引入 WPS Office

以下是将 DeepSeek 的 API 服务引入 WPS Office 的通用集成教程。以调用 DeepSeek 的 AI 功能&#xff08;如文本生成、数据分析&#xff09;为例&#xff0c;假设你需要通过 WPS 的宏或插件调用外部 API&#xff1a; 准备工作 注册 DeepSeek 账号并获取 API Key 访问 DeepSe…...

在Vue中,JavaScript数组常用方法,添加,插入,查找,删除等整理

在Vue中&#xff0c;JavaScript数组常用&#xff0c;添加&#xff0c;插入&#xff0c;查找&#xff0c;删除等整理 1.splice()方法可以直接修改原数组&#xff0c;通过指定要删除元素的索引来删除它。 例&#xff1a; let index // 要删除的元素的索引; this.array.splice(i…...

树莓派上 基于Opencv 实现人脸检测与人脸识别

一&#xff0c;需求 基于树莓派4b&#xff0c;usb1080p摄像头&#xff0c;实现人脸检测与人脸识别。尝试了海陵科的模组和百度的sdk。海陵科的模组无法录入人脸&#xff0c;浪费了100多块钱。百度的sdk 在树莓派上也无法录入人脸&#xff0c;官方解决不了。最后只能用opencv自…...

Unity 接入Tripo 文生模型,图生模型

官方网站&#xff1a;https://www.tripo3d.ai/app/home自行注册账号并且登陆下载Unity插件&#xff1a;https://cdn-web.tripo3d.ai/plugin/tripo-unity.zip申请apikey&#xff1a; https://platform.tripo3d.ai/api-keys使用&#xff08;后续过程就按照第二步下载的插件里面的…...

Redis常见数据结构

目录 基本介绍 特点&#xff1a; 全局命令 数据类型&#xff1a; String Hash List Set Zset 基本介绍 Redis是一个在内存中存储数据的中间件,可作为数据库&#xff0c;缓存&#xff0c;消息队列等。 特点&#xff1a; 持久化&#xff1a;Redis会把数据存储在内存中…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...