1 推荐系统概述
推荐系统概述
- 1 推荐系统的意义
- 平台方
- 信息生产者(物品)
- 信息消费者(用户)
- 推荐和搜索的区别
- 2 推荐系统架构
- 系统架构
- 算法架构
- 3 推荐系统技术栈
- 算法
- 画像层
- 召回/粗排
- 精排
- 重排序
- 工程
1 推荐系统的意义
信息生产者(平台方) -> 平台(推荐系统) <- 消费者(用户)
平台方
- 平台方为信息生产者提供物品展示位置,然后吸引用户来平台寻找感兴趣的物品。“流量”的产生:对商家物品的展示,用户的浏览、观看、下单等行为。
- 推荐系统改变了传统电商的树状拓扑结构,变成了更容易让流量流通的网络拓扑结构,给每个商品增加了如何和展示机会。如,传统的需要按照每个大类、小类一个个点击去筛选物品;而推荐系统则直接提供个性化推荐,让你直达感兴趣的商品。
- 推荐系统:最大限度吸引用户、留存用户、增加用户粘性、提高用户转换率,达到平台商业目标增长的目的。如(视频平台)点击率、完播率、内置广告点击率;(购物平台)商品点击率、用户转换率:点击->购买。
信息生产者(物品)
- 物品的长尾性和二八效应严重,需要推荐系统挖掘出那 80% 的长尾物品,推荐给有需要的用户。
- 推荐系统对长尾物品的曝光,对信息生产者(如视频平台的作者、商家)也是一种激励。
- 推荐系统的匹配需求和供给能力也成为衡量一个平台的重要标准,决定了该平台的商业价值。
信息消费者(用户)
提高用户体验(基本+惊喜):满足目标明确用户的基本要求,给没有明确需求用户以惊喜推荐。最终都可能提高平台的转换率。
推荐和搜索的区别
| 推荐 | 搜索 | |
|---|---|---|
| 用户意图 | 不明确 | 明确 |
| 个性化程度 | 强 | 弱 |
| 优化目标 | 广泛,如用户停留时长、点击、多样性、拼分等 | 通常指标:归一化折损累计收益(NDCG),Precision 和 Recall(精确率和召回率) |
| 马太效应和长尾理论 | 也存在马太效应,长尾性非常明显 | 存在马太效应(靠后的很少被关注) |
2 推荐系统架构
系统架构
推荐系统架构,从数据驱动角度,可以分为如下三层:
- 离线层:不用实时数据,不提供实时响应(批量完成,对数据量和算法复杂度限制少);
- 近线层:使用实时数据,不保证实时响应;
- 在线层:使用实时数据,保证实时在线服务(和用户交互,有实时性要求,限制算法复杂性和处理数据量);
网飞的设计架构如下图:

整个数据部分是一整个链路,包括三块:
- 客户端及服务器实时数据处理: 记录用户行为,如看了哪些内容、和哪些内容交互,停留时间,使用设备,发生时间等(通过埋点)。
- 流处理平台准实时数据处理:记录一些准实时数据,如用户行为数据。
- 大数据平台离线数据处理:一些数据操作。
这三个模块具体来说,
- 离线层,
- 数据处理
- 特征工程、离线特征计算
- 离线模型的训练
- 近线层
- 在线层,面向用户,需要考虑响应时延;用户请求发送到在线层,在线层快速返回结果
- 模型在线服务,包括快速召回和排序
- 在线特征快速处理拼接::根据传入的用户ID和场景,快速读取特征和处理
- AB实验或者分流:根据不同用户采用不一样的模型,比如冷启动用户和正常服务模型;
- 运筹优化和业务干预:比如要对特殊商家流量扶持、对某些内容限流;
算法架构
- 召回
- 粗排
- 精排
- 重排
3 推荐系统技术栈
算法
架构: 物料库 -> 召回 -> 粗排 -> 精排 -> 重排
- 召回:要求轻量低延迟,量大(多采用多路召回)
- 粗排:精排前过滤,兼顾精准性和低延迟
- 精排:对粗排结果的候选集进行打分和排序,要在最大时延允许下保证打分的精准性
- 重排:基于运营策略、多样性、上下文重新进行微调
- 混排:多个业务都想在 feed 流上曝光,则需要混排。如推荐流中插入广告(基于规则策略,例如广告定坑)、视频流汇总插入图文(强化学习)
画像层
物料库:如何绘制一个用户画像和商品画像。用户画像:关于年龄、爱好等。商品画像:形式多样,如一个内容画像的内容理解可以包含,通过内容本身理解、通过用户理解。
其中涉及到技术包括:
- 文本理解
- 关键词标签
- 内容理解
- 知识图谱
召回/粗排
多路召回
- 考虑用户层面
- 考虑系统层面
- 系统多样性内容分发
- 可解释性推荐一部分召回是有明确推荐理由的
其中涉及到的技术包括:
- 经典召回模型
- 序列召回模型
- 用户序列拆分
- 知识图谱
- 图模型
精排
其中涉及到的技术包括:
- 特征交叉模型
- 序列模型
- 多模态信息融合
- 多任务学习
- 强化学习
- 跨域推荐
重排序
经典算法有:MRR、DPP、RNN 等
工程
- 语言:python 、 C++、Java
- 机器学习框架:Tensorflow、Pytorch
- 数据分析工具:Pandas、Hadoop、Spark
参考文献:
- FunRec 第一章推荐系统概述
相关文章:
1 推荐系统概述
推荐系统概述 1 推荐系统的意义平台方信息生产者(物品)信息消费者(用户)推荐和搜索的区别 2 推荐系统架构系统架构算法架构 3 推荐系统技术栈算法画像层召回/粗排精排重排序 工程 1 推荐系统的意义 信息生产者(平台方…...
Redis初阶笔记
1. 认识Redis Redis是一个基于内存运行的缓存中间件,有着多种的数据类型可供使用。Redis的使用主要是为关系性数据库(MySQL等)分担压力,在高并发环境下MySQL执行命令的压力是很大的,容易宕机,所以需要中间件…...
electron.vite 项目创建以及better-sqlite3数据库使用
1.安装electron.vite npm create quick-start/electronlatest中文官网:https://cn.electron-vite.org/ 2. 安装项目依赖 npm i3.修改 electron-builder 配置文件 appId: com.electron.app productName: text33 directories:buildResources: build files:- !**/.v…...
【新品解读】AI 应用场景全覆盖!解码超高端 VU+ FPGA 开发平台 AXVU13F
「AXVU13F」Virtex UltraScale XCVU13P Jetson Orin NX 继发布 AMD Virtex UltraScale FPGA PCIE3.0 开发平台 AXVU13P 后,ALINX 进一步研究尖端应用市场,面向 AI 场景进行优化设计,推出 AXVU13F。 AXVU13F 和 AXVU13P 采用相同的 AMD Vir…...
Proxmox VE 8.3 qm 方式导入ESXi Linux OVA UEFI模式虚拟机
前言 实现esxi ova uefi 虚拟机导入到pve,Linux UEFI 都支持 创建一个105虚拟机 qm 参数使用参考,以下可以根据自己的实际情况执行调整 esxi 导出虚拟机参考 #vmid (100 - 999999999) vmid=105# qm vm name...
OpenAI 放王炸,将发布整合多项技术的 GPT-5,并免费无限使用,该模型有哪些技术亮点
对于 ChatGPT 的免费用户,将可以无限制地访问 GPT-5,但仅限于标准的智能级别。该级别会设定滥用限制,以防止不当使用(意思就是你得付费嘛)。 OpenAI CEO Sam Altman 今天在 X 上透露了 GPT-4.5 和 GPT-5 的最新发展计划。 OpenAI 将发布代…...
【前端框架与库】「深入理解 Vue 插槽」:类型、用法与实际场景解析,增强组件复用性的利器
深入理解 Vue 插槽 [TOC](深入理解 Vue 插槽) 前言一、插槽的几种类型1. 默认插槽(Default Slot)2. 具名插槽(Named Slot)3. 作用域插槽(Scoped Slot) 二、插槽的作用与实际使用场景三、延伸知识总结 前言 …...
对比 LVS 负载均衡群集的 NAT 模式和 DR 模式,比较其各自的优势 与基于 openEuler 构建 LVS-DR 群集
一、 对比 LVS 负载均衡群集的 NAT 模式和 DR 模式,比较其各自的优势 NAT 模式 部署简单:NAT 模式下,所有的服务器节点只需要连接到同一个局域网内,通过负载均衡器进行网络地址转换,就可以实现负载均衡功能。不需要对…...
matplotlib绘制频率分布直方图
1.给了数据,让统计这些数据的分布 from matplotlib import pyplot as plt from matplotlib import rcParams import random as r# 直方图用来统计每个区间数量多少rcParams[font.sans-serif] [SimHei] rcParams[axes.unicode_minus] Falseplt.figure(figsize(20,8), dpi80)#…...
相得益彰,Mendix AI connector 秒连DeepSeek ,实现研发制造域场景
在当今快速发展的科技领域,低代码一体化平台已成为企业数字化转型的关键工具,同时,大型语言模型(LLM)如 DeepSeek 在自动生成代码和提供智能建议方面表现出色。 Mendix 于近期发布的 GenAI 万能连接器,目前…...
shell脚本自动安装MySQL8
环境:centos7版本:8.0.28安装包:mysql-8.0.28-linux-glibc2.12-x86_64.tar.xz 二进制包要求:安装包和shell脚本在同一目录下执行方式:sudo ./install_mysql8.sh #!/bin/bash# 定义MySQL安装目录和压缩包名称MYSQL_DIR…...
Git | 相关命令
相关资料 官网Git 学习教程Git 入门指南Git 的奇技淫巧Git Extras git 命令行扩展工具配置 Git 处理行结束符Git 配置多个 SSH-Key下载相关 Windows 版下载镜像使用 jsdelivr 加速 Github 仓库资源 commit 常用的 type 常用 Git 命令 [xxx] 均为可选参数 git clone # 拷贝一…...
RealClip正式发布:重新定义轻量化数字内容交互体验
在移动互联网流量红利逐渐见顶的当下,用户对即时性、碎片化娱乐与交互体验的需求持续攀升。轻量化小游戏、VR互动、数字孪生、工业仿真等内容形态迅速崛起,但开发者却面临两大核心矛盾:如何将高性能互动内容轻量化嵌入现有应用中?…...
Linux内核 - 非仿生机器人之感知主控系统(协议栈)
Linux内核 - 非仿生机器人之感知主控系统(协议栈) 注:该项目为18年实习期间,参与非仿生六足机器人(Linux方案)的个人理解和积累。时至今日,再看其实仅为一套系统编程相关框架,一直为…...
CZML 格式详解,javascript加载导出CZML文件示例
示例地址:https://dajianshi.blog.csdn.net/article/details/145573994 CZML 格式详解 1. 什么是 CZML? CZML(Cesium Zipped Markup Language)是一种基于 JSON 的文件格式,用于描述地理空间数据和时间动态场景。它专…...
【gRPC-gateway】auth-通过拦截器从上下文中提取元数据用于认证,与从http header转发待认证数据到上下文进行验证,go案例
从grpc上下文中提取元数据用于认证 案例 interceptor.go package serverimport ("context""errors""google.golang.org/grpc""google.golang.org/grpc/metadata""strings" )// UnaryInterceptor 是一个 unary RPC 的拦截器…...
Sass基础知识以及常用知识整理
Sass基础知识以及常用知识整理 一、CSS 功能拓展 注意:>、 、和~的区分 1.1 嵌套规则 Sass 允许将一套 CSS 样式嵌套进另一套样式中,内层的样式将它外层的选择器作为父选择器,例如: #main p {color: #00ff00;width: 97%;…...
Redis 内存回收机制
Redis 是一个基于内存的键值存储系统,为了避免内存耗尽,Redis 提供了多种内存回收机制。以下是 Redis 内存回收的主要方式: 1. 过期键删除 Redis 支持为键设置过期时间,过期后会自动删除键以释放内存。 1.1 设置过期时间 SET key…...
docker安装mongo,导入、导出数据
1、docker安装mongo docker pull mongo docker run -d -p 27017:27017 --name mongodb mongodocker update mongodb --restartalways ## 开机自启动-d:表示以后台模式运行容器。 -p 27017:27017:将容器内部的 MongoDB 默认端口 27017 映射到宿主机的 27…...
Excel常用操作
Excel常用操作 学习资源 37_电子表格处理考点精讲_设置数据格式_哔哩哔哩_bilibili 快速输入数据与编辑数据 一个工作簿可以包含多个工作表 特殊数据的添加格式 输入负数, 例如-3、-5 常规输入, 直接输入-3、-5;使用(), 例如在单元格中输入(3)回车即可变为-3;上述括号不区分中…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
【深尚想】TPS54618CQRTERQ1汽车级同步降压转换器电源芯片全面解析
1. 元器件定义与技术特点 TPS54618CQRTERQ1 是德州仪器(TI)推出的一款 汽车级同步降压转换器(DC-DC开关稳压器),属于高性能电源管理芯片。核心特性包括: 输入电压范围:2.95V–6V,输…...
前端工具库lodash与lodash-es区别详解
lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...
Electron简介(附电子书学习资料)
一、什么是Electron? Electron 是一个由 GitHub 开发的 开源框架,允许开发者使用 Web技术(HTML、CSS、JavaScript) 构建跨平台的桌面应用程序(Windows、macOS、Linux)。它将 Chromium浏览器内核 和 Node.j…...
软件工程教学评价
王海林老师您好。 您的《软件工程》课程成功地将宏观的理论与具体的实践相结合。上半学期的理论教学中,您通过丰富的实例,将“高内聚低耦合”、SOLID原则等抽象概念解释得十分透彻,让这些理论不再是停留在纸面的名词,而是可以指导…...
多模态学习路线(2)——DL基础系列
目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization(RMSNorm) 二、激活函数 1. Sigmoid激活函数(二分类&…...
Unity VR/MR开发-开发环境准备
视频讲解链接: 【XR马斯维】UnityVR/MR开发环境准备【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...
【免杀】C2免杀技术(十五)shellcode混淆uuid/ipv6/mac
针对 shellcode 混淆(Shellcode Obfuscation) 的实战手段还有很多,如下表所示: 类型举例目的编码 / 加密XOR、AES、RC4、Base64、Poly1305、UUID、IP/MAC改变字节特征,避开静态签名或 YARA结构伪装PE Stub、GIF/PNG 嵌入、RTF OLE、UUID、IP/MAC看起来像合法文件/数据,弱…...
