LeetCode 热门100题-字母异位词分组
2.字母异位词分组
题目描述:
给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。
字母异位词 是由重新排列源单词的所有字母得到的一个新单词。
示例 1:
输入: strs =
["eat", "tea", "tan", "ate", "nat", "bat"]
输出:
[["bat"],["nat","tan"],["ate","eat","tea"]]
给定的是vector<string>类型的容器,输出的是vector<vector<string>>类型的容器。
class Solution {
public:
vector<vector<string>> groupAnagrams(vector<string>& strs) {unordered_map<string,vector<string>> anagrams;for(const string& str:strs){string sortedstr = str;sort(sortedstr.begin(),sortedstr.end());anagrams[sortedstr].emplace_back(str);}vector<vector<string>> result;for(const auto&pair:anagrams){result.emplace_back(pair.second);}return result;
}
};
实现逻辑:使用for循环遍历strs,对每一个strs[i]对应的单词进行sort排序,如tea和eat都会被排序为aet,对每个单词排序后的结果作为键,如果该键不存在于哈希表中,则创建新元素<key,value>,如果键已存在,则将新单词加入键所对应的vector中,比如开始遍历实例中给的vector容器时,eat和tea经过排序后,都对应aet这个键,遍历eat时,哈希表中开始创建了<aet,{eat}>,当遍历到tea时,哈希表就成了<aet,{eat,tea}>。而后再对遍历完所有strs后的哈希表进行遍历,将其所有元素中存在的值都加入result中,最后result就会成为[["bat"],["nat","tan"],["ate","eat","tea"]]的形式,那么只需返回result就行。
代码解释:
unordered_map<string,vector<string>> anagrams;创建string,vector<string>类型的哈希表anagrams;
for(const string& str:strs)使用for循环对strs中的每一个元素都取别名,const string& str:strs是C++中对容器元素进行遍历的代码。
sort(sortedstr.begin(),sortedstr.end());使用sort对sortedstr进行排序,这里是把sortedstr也当作了一个容器,不过是char类型,按照begin()和end()迭代器作为sort的起始和终结条件。如果sortedstr对应eat,排序后,它就成为aet。
anagrams[sortedstr].emplace_back(str);,按照键:sortedstr往哈希表中插入元素str,其实此时sortedstr也就是str所对应的排序好后的键,string sortedstr = str;这也就是为什么要加这一句代码。
----anagrams[sortedstr]:首先尝试在 anagrams 哈希表中查找键为 sortedstr 的元素。如果找到,则返回该键对应的 vector<string>;如果没有找到,则会创建一个新的 vector<string> 并将其与 sortedstr 键关联起来,然后返回这个新的向量。
----.emplace_back(str):这是在向由 anagrams[sortedstr] 返回的向量中添加元素的一种方式。emplace_back() 方法与push_back() 方法类似,都是向容器末尾添加元素。但是,emplace_back() 更加高效,因为它是在容器的末尾直接构造对象,而不是先创建对象再复制或移动它进入容器。这意味着如果 emplace_back() 的参数正好匹配要插入元素的构造函数参数,则可以直接在容器的存储空间上进行构造,避免不必要的拷贝或移动操作。
unordered_map<string,vector<string>> 类型的容器 anagrams。这里的pair 实际上代表 anagrams 中的每一个键值对(即每一个元素),其中 pair.first 对应键(在这个场景下是排序后的字符串),而 pair.second 对应值(即一组异位词组成的 vector<string>)。比如经过前面的代码,那么anagrams中元素的存在形式可能是这样的 [{abt,["bat"]},{ant,["nat","tan"]},{aet,["ate","eat","tea"]}],那么每一次遍历pair.second就对应着["bat"]、["nat","tan"]、["ate","eat","tea"]这几个容器。,而后将其插入至result中。
最后将result返回即可。
相关文章:
LeetCode 热门100题-字母异位词分组
2.字母异位词分组 题目描述: 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan&q…...
耐张线夹压接图片智能识别
目录 一、图片压接部位定位1、图像准备2、人工标注3、训练4、推理5、UI界面 压接状态智能识别 一、图片压接部位定位 ,往往X射线照片是一个大图,进行图片压接部位定位目的是先找到需识别的部位,再进行识别时可排除其他图像部位的干扰&#x…...
ADC 的音频实验,无线收发模块( nRF24L01)
nRF24L01 采用 QFN20 封装,有 20 个引脚,以下是各引脚的详细介绍: 1. 电源引脚 ◦ VDD:电源输入端,一般接 3V 电源,为芯片提供工作电压,供电电压范围为 1.9V~3.6V。 ◦ VSS…...
企业SSL 证书管理指南
文章从以下几个部分展开 SSL证书的用途和使用场景SSL证书的申请类型和实现方式SSL证书的管理SSL证书的续签 一、SSL 证书的用途和使用场景 1.1 为什么要使用 SSL 证书? 1. 数据安全 🛡️- 在 HTTP 传输中,TCP 包可以被截获,攻…...
Python Pandas(7):Pandas 数据清洗
数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。数据清洗与预处理的常见步骤: 缺失值处理:识别并…...
南京观海微电子----整流滤波电路实用
01 变压电路 通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。电源变压器由初级绕组、次级绕组和铁芯组成。初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。通俗的说,电源变压器是一种电→磁→电转换器件。即初级的交流电转化…...
【python】向Jira测试计划下,附件中增加html测试报告
【python】连接Jira获取token以及jira对象 # 往 jira 测试计划下面,上传测试结果html def put_jira_file(plain_id):# 配置连接jiraconn ConnJira()jira conn.jira_login()[2]path jira.issue(O45- plain_id)attachments_dir os.path.abspath(..) \\test_API…...
探索ChatGPT背后的前端黑科技
由于图片和格式解析问题,可前往 阅读原文 在人工智能与互联网技术飞速发展的今天,像ChatGPT这样的智能对话系统已经成为科技领域的焦点。它不仅能够进行自然流畅的对话,还能以多种格式展示内容,为用户带来高效且丰富的交互体验。然…...
Agents Go Deep 智能体深入探索
Agents Go Deep 智能体深入探索 核心事件 OpenAI发布了一款先进的智能体“深度研究”,它能借助网络搜索和推理生成研究报告。 最新进展 功能特性:该智能体依据数百个在线资源生成详细报告,目前仅支持文本输出,不过很快会增加对图…...
DeepSeek全生态接入指南:官方通道+三大云平台
DeepSeek全生态接入指南:官方通道三大云平台 一、官方资源入口 1.1 核心交互平台 🖥️ DeepSeek官网: https://chat.deepseek.com/ (体验最新对话模型能力) 二、客户端工具 OllamaChatboxCherry StudioAnythingLLM …...
c++TinML转html
cTinML转html 前言解析解释转译html类定义开头html 结果这是最终效果(部分):  前言 在python.tkinter设计标记语言(转译2-html)中提到了将Ti…...
STM32硬件SPI函数解析与示例
1. SPI 简介 SPI(Serial Peripheral Interface)即串行外设接口,是一种高速、全双工、同步的通信总线,常用于微控制器与各种外设(如传感器、存储器等)之间的通信。STM32 系列微控制器提供了多个 SPI 接口&a…...
滤波器:卡尔曼滤波
卡尔曼滤波(Kalman Filter)是一种高效的递归算法,主要用于动态系统的状态估计。它通过结合系统模型和噪声干扰的观测数据,实现对系统状态的最优估计(在最小均方误差意义下)。以下从原理、使用场景和特点三个…...
深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
在深度学习框架中,TensorFlow 和 PyTorch 无疑是两大明星框架。前面两篇文章我们分别介绍了 TensorFlow(点击查看) 和 PyTorch(点击查看)。它们引领着 AI 开发的潮流,吸引着无数开发者投身其中。但这两大框…...
Windows环境管理多个node版本
前言 在实际工作中,如果我们基于Windows系统开发,同时需要维护老项目,又要开发新项目,且不同项目依赖的node版本又不同时,那么就需要根据项目切换不同的版本。本文使用Node Version Manager(nvm࿰…...
opencascade 源码学习BRepBuilderAPI-BRepBuilderAPI
BRepBuilderAPI BRepBuilderAPI 是一个用于构建和操作 BRep(边界表示法,Boundary Representation)拓扑数据结构的工具类。它提供了高级接口,用于创建几何形状(如顶点、边、面、实体等)以及进行扫掠&#x…...
Vue 2 + Webpack 项目中集成 ESLint 和 Prettier
在 Vue 2 Webpack 项目中集成 ESLint 和 Prettier 可以帮助你规范代码风格并自动格式化代码。以下是详细的步骤: 1. 安装 ESLint 和 Prettier 相关依赖 在项目根目录下运行以下命令,安装 ESLint、Prettier 和相关插件: npm install --save…...
Renesas RH850 EEL库的优点
文章目录 1. 磨损均衡(Wear Leveling)2. 数据抽象与易用性3. 后台维护与自动刷新4. 多优先级操作5. ECC 错误处理与数据完整性EEL 与 FDL 的协作机制1. 分层架构2. 存储池划分3. 协作流程4. 同步与互斥5. 性能优化实际应用场景示例场景:车辆里程存储总结1. 磨损均衡(Wear L…...
torch导出ONNX模型报错:OnnxExporterError: Module onnx is not installed
问题: 使用torch 导出模型为onnx文件时报错:torch.onnx.OnnxExporterError: Module onnx is not installed! 环境: 操作系统 Win10 python运行环境 Anacoda3 torch 2.6.0 torchvision …...
LabVIEW 用户界面设计基础原则
在设计LabVIEW VI的用户界面时,前面板的外观和布局至关重要。良好的设计不仅提升用户体验,还能提升界面的易用性和可操作性。以下是设计用户界面时的一些关键要点: 1. 前面板设计原则 交互性:组合相关的输入控件和显示控件&#x…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
