当前位置: 首页 > news >正文

【线性代数】1行列式

1. 行列式的概念

行列式的符号表示:\left | A \right |,det(A)

行列式的计算结果:一个数

计算模型1:二阶行列式

二阶行列式:$\begin{vmatrix} a &b\\ c & d \end{vmatrix}=ad-bc$

三阶行列式:$\begin{vmatrix} 3 & 0 & 4 \\ 2 & -1 & 7 \\-5 & 3 & 1\end{vmatrix}$

n阶行列式:$\begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & a_{n2} & \ldots & a_{nn}\end{vmatrix}$

🍎计算行列式 \begin{vmatrix} 1&-1\\ 4&2 \end{vmatrix}

\begin{vmatrix} 1&-1\\ 4&2 \end{vmatrix}=1\times 2-\left ( -1 \right )\times 4=6


计算模型2:上三角形行列式

上三角形行列式特征:主对角线下皆为0。

上三角形行列式:\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}

化上三角形通用方法:主对角线下,逐列变0。


2. 行列式的性质

性质1:倍加值不变

某行(列)加减另一行(列)的几倍,行列式的值不变。

行:row

列:column

🍎计算行列式 \begin{vmatrix} 1 & -2 & 4 \\ 1 & 1 & 2 \\ 3 & 9 & 5 \end{vmatrix}.

\begin{vmatrix} 1 & -2 & 4 \\ 1 & 1 & 2 \\ 3 & 9 & 5 \end{vmatrix}\frac{r_2-1r_1}{r_3-3r_1} \begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & -2 \\ 0 & 15 & -7 \end{vmatrix}

\begin{vmatrix} 1 & -2 & 4 \\ 1 & 1 & 2 \\ 3 & 9 & 5 \end{vmatrix}= \begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & -2 \\ 0 & 15 & -7 \end{vmatrix}= \begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & -2 \\ 0 & 0 & 3 \end{vmatrix}=1\times3\times3=9

🍎计算行列式 \begin{vmatrix} 1 & 2 & 3 \\ -2 & 0 & -5 \\ 5 & 6 & 7 \end{vmatrix}.

\begin{vmatrix} 1 & 2 & 3 \\ -2 & 0 & -5 \\ 5 & 6 & 7 \end{vmatrix}= \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 0 & -4 & -8 \end{vmatrix}= \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & -7 \end{vmatrix}=1\times4\times(-7)=-28


性质2:互换要变号

互换行列式的某两行(列),行列式变号。

🍎计算行列式 \begin{vmatrix} 2 & 3 & 5 \\ 0 & 0 & 1 \\ 0 & 4 & 7 \end{vmatrix}.
\begin{vmatrix} 2 & 3 & 5 \\ 0 & 0 & 1 \\ 0 & 4 & 7 \end{vmatrix}\quad\underline{r_2\leftrightarrow r_3}\quad-\quad \begin{vmatrix} 2 & 3 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 1 \end{vmatrix}\quad=-(2\times4\times1)=-8


性质3:提取公因子

行列式中,某一行(列)所有元素的公因子可以提到行列式记号外。

🍎已知\begin{vmatrix} a & b & c \\ d & e & f \\ h & i & j \end{vmatrix}=3,则

相关文章:

【线性代数】1行列式

1. 行列式的概念 行列式的符号表示: 行列式的计算结果:一个数 计算模型1:二阶行列式 二阶行列式: 三阶行列式: n阶行列式: 🍎计算行列式 计算模型2:上三角形行列式 上三角形行列式特征:主对角线下皆为0。 上三角形行列式: 化上三角形通用方法:主对角线下,…...

DeepSeek免费部署到WPS或Office

部署到WPS - 通过OfficeAI插件接入: - 准备工作:安装最新版本的WPS Office软件;访问DeepSeek官网,点击右上角的“API开放平台”,登录账号(若无账号需先注册),登录成功后,…...

数据结构 二叉树

一、⼆叉树的定义 ⼆叉树是⼀种特殊的树型结构,它的特点是每个结点⾄多只有2棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的⼦树有左右之分,其次序不能任意颠倒。 ⼆叉的意思是这种树的每⼀个结点最多只有两个孩…...

鸿蒙开发:熟知@BuilderParam装饰器

前言 本文代码案例基于Api13。 在实际的开发中,我们经常会遇到自定义组件的情况,比如通用的列表组件,选项卡组件等等,由于使用方的样式不一,子组件是动态变化的,针对这一情况,就不得不让使用方把…...

光谱相机在天文学领域的应用

天体成分分析 恒星成分研究:恒星的光谱包含了其大气中各种元素的吸收和发射线特征。通过光谱相机精确测量这些谱线,天文学家能确定恒星大气中氢、氦、碳、氮、氧等元素的含量。如对太阳的光谱分析发现,太阳大气中氢元素占比约 71%&#xff0…...

不到1M的工具,使用起来非常丝滑!

今天给大家推荐两款电脑上超实用的小软件,分别是倒计时工具和关机助手,用起来特别顺手,希望能帮到大家。 关机助手 帮你自动关机 先说说关机助手。这款软件简直太方便了!它是一款免安装的小工具,体积超小,…...

软考高级《系统架构设计师》知识点(二)

操作系统知识 操作系统概述 操作系统定义:能有效地组织和管理系统中的各种软/硬件资源,合理地组织计算机系统工作流程,控制程序的执行,并且向用户提供一个良好的工作环境和友好的接口。操作系统有三个重要的作用: 管理…...

深入解析操作系统控制台:阿里云Alibaba Cloud Linux(Alinux)的运维利器

作为一位个人开发者兼产品经理,我的工作日常紧密围绕着云资源的运维和管理。在这个过程中,操作系统扮演了至关重要的角色,而操作系统控制台则成为了我们进行系统管理的得力助手。本文将详细介绍阿里云的Alibaba Cloud Linux操作系统控制台的功…...

云原生AI Agent应用安全防护方案最佳实践(上)

当下,AI Agent代理是一种全新的构建动态和复杂业务场景工作流的方式,利用大语言模型(LLM)作为推理引擎。这些Agent代理应用能够将复杂的自然语言查询任务分解为多个可执行步骤,并结合迭代反馈循环和自省机制&#xff0…...

Java Virtual Machine(JVM)

JVM跨平台原理 跨平台:一次编译,到处运行 本质:不同操作系统上运行的JVM不一样,只需要把java程序编译成一份字节码文件,JVM执行不同的字节码文件。 Java是高级语言,提前编译一下(变成字节码文件…...

vue前端可视化大屏页面适配方案

参考了其他博主的代码&#xff0c;但发现会有滚动条&#xff0c;并且居中的位置不太对&#xff0c;所以改了一下css&#xff0c;修复了这些问题&#xff0c;直接上代码 <template> <div class"ScaleBoxA"><divclass"ScaleBox"ref"Sca…...

Docker中安装MySql方法

使用Docker安装MySQL的详细步骤,涵盖单机部署、数据持久化、网络配置等内容: 1. 安装Docker 如果尚未安装Docker,请先安装: Windows/macOS:下载 Docker Desktop 并安装。 Linux: curl -fsSL https://get.docker.com | bash sudo systemctl start docker sudo system…...

云轴科技ZStack+神州鲲泰,全面支持企业私有化部署DeepSeek模型

如今&#xff0c;DeepSeek的影响力正呈指数级扩散。全球范围内&#xff0c;从科技巨头到初创企业&#xff0c;纷纷投身于DeepSeek系列模型的接入浪潮。为应对企业数据安全与算力高效管理的双重挑战&#xff0c;云轴科技ZStack联合神州鲲泰&#xff0c;基于昇腾算力底座共推ZSta…...

$ npx electron-forge import 一直报权限问题 resource busy or locked,

jackLAPTOP-7DHDAAL0 MINGW64 /e/project/celetron-project/my-electron-app (master) $ npx electron-forge import > Checking your system > Checking git exists > Checking node version > Checking packageManager version √ Found node22.14.0 √ Found gi…...

LLM:GPT 系列

阅读原文&#xff1a; LLM&#xff1a;Qwen 系列 GPT&#xff08;Generative Pre-trained Transformer&#xff09;是生成式预训练语言模型&#xff0c;基于 Transformer 架构&#xff0c;专注于通过自回归的方式生成自然语言文本&#xff0c;即给定一个输入序列 x { x 1 , …...

2025年:边缘计算崛起下运维应对新架构挑战

一、引言 随着科技的飞速发展&#xff0c;2025年边缘计算正以前所未有的速度崛起&#xff0c;给运维行业带来了全新的架构挑战。在这个充满机遇与挑战的时代&#xff0c;美信时代公司的美信监控易运维管理软件成为运维领域应对这些挑战的有力武器。 二、边缘计算崛起带来的运维…...

【深度学习模型分类】

深度学习模型种类繁多&#xff0c;涵盖了从基础到前沿的多种架构。以下是主要模型的分类及代表性方法&#xff1a; 1. 基础模型 1.1 多层感知机&#xff08;MLP&#xff09; 特点&#xff1a;全连接神经网络&#xff0c;适用于结构化数据。 应用&#xff1a;分类、回归任务…...

【Java报错已解决】org.springframework.beans.factory.BeanCreationException

???很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。??? 欢迎订阅本专栏 目录…...

理解 WebGPU 中的 GPUQueue:GPU 的命令队列

在现代图形编程中&#xff0c;与 GPU 的交互变得越来越高效和灵活&#xff0c;而 WebGPU API 的出现更是为 Web 开发者带来了强大的图形处理能力。其中&#xff0c; GPUQueue 作为 WebGPU 的核心接口之一&#xff0c;扮演着至关重要的角色。本文将详细介绍 GPUQueue 的概…...

电脑显示器无信号是什么原因?查看解决方法

在我们使用电脑的过程中&#xff0c;常遇到的一个问题就是&#xff0c;开机电脑显示器无信号输入。这种故障情况它会导致电脑无法正常显示图像&#xff0c;影响电脑的使用。但是电脑显示器无信号的原因可能有很多&#xff0c;我们需要一一去排除解决。下面便为大家一起来介绍下…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...