当前位置: 首页 > news >正文

用大模型学大模型03-数学基础 概率论 条件概率 全概率公式 贝叶斯定理

要深入浅出地理解条件概率与贝叶斯定理,可以从以下几个方面入手,结合理论知识和实例进行学习:
贝叶斯定理与智能世界的暗语
条件概率,全概率公式与贝叶斯公式的推导,理解和应用
拉普拉斯平滑

贝叶斯解决垃圾邮件分类
贝噎死
被噎死
https://metaso.cn/s/hUUemWR:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例,让我深入浅出的理解条件概率与贝叶斯定理

一、基础知识

1. 条件概率

条件概率是指在已知某个事件发生的情况下,另一个事件发生的概率。用数学公式表示为:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( A ∩ B ) P(A \cap B) P(AB)是事件 A A A和事件 B B B同时发生的联合概率。
- P ( B ) P(B) P(B)是事件 B B B发生的概率。

条件概率的核心思想是通过已知信息更新对事件发生可能性的判断。例如,如果一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球,求第二次取出红球的概率。这个问题可以通过条件概率来解决。

2. 全概率公式

全概率公式用于将复杂的事件分解为多个简单事件的概率之和。公式如下:
P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

其中:
- P ( A ) P(A) P(A)是事件 A A A发生的总概率。
- P ( A ∣ B i ) P(A|B_i) P(ABi)是在事件 B i B_i Bi发生的条件下,事件 A A A发生的概率。
- P ( B i ) P(B_i) P(Bi)是事件 B i B_i Bi发生的概率。

全概率公式在实际问题中非常有用,比如在医学诊断中,根据患者的症状和不同疾病的概率来计算患病的可能性。

3. 贝叶斯定理

贝叶斯定理是条件概率的一种推广,用于计算后验概率。公式如下:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是后验概率,即在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( B ∣ A ) P(B|A) P(BA)是似然概率,即在事件 A A A发生的条件下,事件 B B B发生的概率。
- P ( A ) P(A) P(A)是先验概率,即事件 A A A发生的初始概率。
- P ( B ) P(B) P(B)是边缘概率,即事件 B B B发生的总概率。

贝叶斯定理的核心在于利用已知信息(先验概率)和新证据(似然概率)来更新对事件发生可能性的判断。例如,在文本分类中,根据已知的词频分布和文档类别,可以预测某段文本属于某一类别的概率。

二、实例分析

1. 条件概率实例

假设一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球。求第二次取出红球的概率。

解:

  • 第一次取出红球的概率为 P ( 红 ) = 3 5 P(\text{红}) = \frac{3}{5} P()=53,取出蓝球的概率为 P ( 蓝 ) = 2 5 P(\text{蓝}) = \frac{2}{5} P()=52
  • 在第一次取出红球的条件下,第二次取出红球的概率为 P ( 红 ∣ 红 ) = 3 5 P(\text{红}|\text{红}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。
  • 在第一次取出蓝球的条件下,第二次取出红球的概率为 P ( 红 ∣ 蓝 ) = 3 5 P(\text{红}|\text{蓝}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。

根据全概率公式:
P ( 第二次红 ) = P ( 红 ∣ 红 ) P ( 红 ) + P ( 红 ∣ 蓝 ) P ( 蓝 ) = 3 5 × 3 5 + 3 5 × 2 5 = 9 25 + 6 25 = 15 25 = 0.6 P(\text{第二次红}) = P(\text{红}|\text{红})P(\text{红}) + P(\text{红}|\text{蓝})P(\text{蓝}) = \frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} = \frac{9}{25} + \frac{6}{25} = \frac{15}{25} = 0.6 P(第二次红)=P()P()+P()P()=53×53+53×52=259+256=2515=0.6

2. 贝叶斯定理实例

假设某病的患病率为1%,即 P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01,某检测方法的准确率为90%,即 P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9,假阳性率为5%,即 P ( 阳性 ∣ 无病 ) = 0.05 P(\text{阳性}|\text{无病}) = 0.05 P(阳性无病)=0.05。求某人检测结果为阳性时,实际患病的概率。

解:

  • 先验概率: P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01
  • 似然概率: P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9
  • 边缘概率: P ( 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) + P ( 阳性 ∣ 无病 ) P ( 无病 ) = 0.9 × 0.01 + 0.05 × 0.99 = 0.009 + 0.0495 = 0.0585 P(\text{阳性}) = P(\text{阳性}|\text{病})P(\text{病}) + P(\text{阳性}|\text{无病})P(\text{无病}) = 0.9 \times 0.01 + 0.05 \times 0.99 = 0.009 + 0.0495 = 0.0585 P(阳性)=P(阳性)P()+P(阳性无病)P(无病)=0.9×0.01+0.05×0.99=0.009+0.0495=0.0585

根据贝叶斯定理:
P ( 病 ∣ 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) P ( 阳性 ) = 0.9 × 0.01 0.0585 = 0.1538 P(\text{病}|\text{阳性}) = \frac{P(\text{阳性}|\text{病})P(\text{病})}{P(\text{阳性})} = \frac{0.9 \times 0.01}{0.0585} = 0.1538 P(阳性)=P(阳性)P(阳性)P()=0.05850.9×0.01=0.1538

因此,在检测结果为阳性的条件下,实际患病的概率约为15.38%。

三、总结与应用

通过以上实例可以看出,条件概率和贝叶斯定理在实际问题中具有广泛的应用价值。例如:

  1. 医学诊断:根据患者的症状和检测结果,计算患病的可能性。
  2. 自然语言处理:根据文本特征和语料库,预测文本的主题或情感。
  3. 机器学习:朴素贝叶斯分类器利用贝叶斯定理进行分类预测。

学习这些概念时,建议结合具体问题进行练习,并逐步深入理解其背后的数学原理和应用场景。希望这个入门级教程能帮助你更好地掌握条件概率与贝叶斯定理!

相关文章:

用大模型学大模型03-数学基础 概率论 条件概率 全概率公式 贝叶斯定理

要深入浅出地理解条件概率与贝叶斯定理,可以从以下几个方面入手,结合理论知识和实例进行学习: 贝叶斯定理与智能世界的暗语 条件概率,全概率公式与贝叶斯公式的推导,理解和应用 拉普拉斯平滑 贝叶斯解决垃圾邮件分类 …...

C++ Primer 参数传递

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...

Jupyter lab 无法导出格式 Save and Export Notebook As无法展开

本来尝试jypyter lab如何导出HTML带有侧边导航栏,一顿操作后发现还是没实现。 又突然发现导出其他格式地功能不能用了,浏览器里Save and Export Notebook As展开按钮为灰色打不开。 经典想实现的没实现还把原先的搞坏了。 看了jupyter lab的运行信息发…...

Mac之JDK安装

Mac之JDK安装 一.安装 jdk 打开终端输入命令:java -version 查看是否已安装 JDK Oracle 官方下载地址 根据自己Mac 系统安装 查看 Mac 系统,打开中断命令,输入: uname -a Compressed Archive 是压缩文档,下载的是一个 .tar.gz 压缩包 D…...

OpenEuler学习笔记(三十一):在OpenEuler上搭建仓颉语言开发环境

仓颉语言(Cangjie programming language)相对较为小众,截至2025年,并没有广泛的资料和成熟的通用搭建流程。不过下面为你提供一个较为通用的在OpenEuler上搭建开发环境的大致思路,你可以根据实际情况进行调整。 1. 安…...

2021年全国研究生数学建模竞赛华为杯E题信号干扰下的超宽带(UWB)精确定位问题求解全过程文档及程序

2021年全国研究生数学建模竞赛华为杯 E题 信号干扰下的超宽带(UWB)精确定位问题 原题再现: 一、背景   UWB(Ultra-Wideband)技术也被称之为“超宽带”,又称之为脉冲无线电技术。这是一种无需任何载波,通过发送纳秒…...

【电脑】u盘重装win7

u盘必须8GB以上 1. CPU型号 首先查看CPU的型号看看到底能不能装win7 2. 下载光盘映像文件 网址 看电脑是多少位的机器(32位下载x86 64位下载x64) 一共是这么多个版本按需下载对应的版本 电脑小白推荐无脑下载旗舰版 将链接复制到迅雷进行下载 3. 下载软碟通 网址 下…...

HCIA项目实践--RIP的拓展配置

9.4.7 RIP的拓展配置 (1)RIPV2的手工认证 RIPv2 的手工认证是增强网络安全性的手段。管理员手动配置密钥,路由器在收发 RIPv2 路由更新消息时,会对消息中的认证信息进行检查。发送方添加密钥,接收方用预设密钥验证。若…...

常用架构图:业务架构、产品架构、系统架构、数据架构、技术架构、应用架构、功能架构及信息架构

文章目录 引言常见的架构图I 业务架构图-案例模块功能说明1. 用户界面层 (UI)2. 应用服务层3. 数据管理层4. 基础设施层业务流程图示例技术实现II 功能架构图 -案例功能模块说明1. 船舶监控模块2. 报警管理模块3. 应急响应模块4. 通信管理模块5. 数据分析模块数据管理层基础设施…...

初阶c语言(练习题,猜随机数,关机程序)

目录 第一题,使用函数编写一个随机数,然后自己猜,猜随机数 第二道题(关机程序) 实现代码(关机程序) 实现代码(猜数字) 前言: 学习c语言,学习…...

三维重建(十二)——3D先验的使用

文章目录 零、最近感受和前言一、使用能够快速得到重建初始化的方法1.1 Colmap(多视角)1.2 深度估计(单视角)二、已知形状模板2.1 人脸2.2 人体2.3 动物三、刚性与非刚性约束(变形约束)3.1 刚性变形3.2 非刚性变形四、统计(深度学习)先验——从大量(3D)数据中提取信息…...

DDoS技术解析

这里是Themberfue 今天我们不聊别的,我们聊聊著名的网络攻击手段之一的 DDoS,看看其背后的技术细节。 DoS 了解 DDoS 前,先来讲讲 DoS 是什么,此 DoS 而不是 DOS 操作系统啊。1996年9月6日,世界第三古老的网络服务提供…...

总结:如何在SpringBoot中使用https协议以及自签证书?

总结:如何在SpringBoot中使用https协议以及自签证书? 前提一:什么是http协议?前提二:什么是https协议?一生成自签证书二 将证书转换为PKCS12格式三 配置SpringBoot(1)修改配置文件&a…...

Django开发入门 – 4.创建Django app

Django开发入门 – 4.创建Django app Create A Django App Under An Existing Project By JacksonML 1. 什么是Django app? Django项目面向Web应用程序,它会由一个或多个子模块组成,这些子模块称为apps。 Django apps负责执行完整Web应用程序中涉及…...

安装WPS后,导致python调用Excel.Application异常,解决办法

在使用xlwings编辑excel文件时,默认调用的是“Excel.Application”,如果安装过wps,会导致该注册表为WPS,会导致xlwings执行异常 因为安装过WPS,导致与Excel不兼容的问题,想必大家都听说过。有些问题及时删…...

语言大模型基础概念 一(先了解听说过的名词都是什么)

SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别 STF(Supervised Fine-Tuning)和RLHF(Reinforcement Learning from Human Feedback)是两种不同的模型训练方法,分别…...

理解 WebGPU 的入口: navigator.gpu

在现代 Web 开发中,WebGPU 已经成为实现高性能图形渲染和计算的强大工具。作为 WebGPU API 的入口点, navigator.gpu 是开发者与 GPU 交互的起点。本文将详细介绍 navigator.gpu 的属性和方法,以及如何通过它初始化 WebGPU 环境。 什…...

Django 创建第一个项目

Django 创建第一个项目 引言 Django 是一个高级的 Python Web 框架,它鼓励快速开发和干净、实用的设计。本指南将带您从头开始创建一个简单的 Django 项目,以便您能够熟悉 Django 的基本结构和概念。 准备工作 在开始之前,请确保您已经安装了 Python 和 Django。以下是安…...

ChatGPT vs DeepSeek详细对比

💡 AI模型发展背景 OpenAI的GPT系列需要数据参数算力,这些要素共同推动了模型的成长。但是,到了GPT-5时代,人类现有的知识精华几乎被学习殆尽,模型的提升空间变得有限。于是OpenAI团队另辟蹊径,尝试模拟人…...

日语学习-日语知识点小记-构建基础-JLPT-N4N5阶段(6):動詞ない形について句型

日语学习-日语知识点小记-构建基础-JLPT-N4&N5阶段(6):動詞ない形について句型 1、前言(1)情况说明(2)工程师的信仰2、知识点(1)~動詞な形 +なければなりません(2)~動詞な形  + なくてもいいです(3)に まで までに :区別3、单词(1)日语单词…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...