当前位置: 首页 > news >正文

机器学习:k均值

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com),欢迎查看。

在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。

**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚类既能作为一个单独过程,用于找寻数据内在的分布结构,也可以作为分类等其他学习任务的前驱过程。

距离计算:

  • 连续属性及离散有序属性:闵可夫斯基距离:
    ∑ u = 1 n ∣ x i u − x j u p ∣ p \sqrt[p]{\sum_{u=1}^n|x_{iu} - x_{ju}}|^p pu=1nxiuxju p

  • 无序属性:VDM(Value Difference Metric)
    ∑ i = 1 k ∣ m u , a , i m u , a − m u , b , i m u , b ∣ p \sum_{i=1}^{k}{|\frac{m_{u,a,i}}{m_{u,a}}-\frac{m_{u,b,i}}{m_{u,b}}|^p} i=1kmu,amu,a,imu,bmu,b,ip

K均值算法(k-means):对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。给定样本集D,k-means算法针对聚类所得簇划分C最小化平方误差:
E = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − u i ∣ ∣ 2 2 E\ =\ \sum_{i=1}^{k}\sum_{x\in C_i}\left|\left|x-u_i\right|\right|_2^2 E = i=1kxCixui22
K-Means聚类算法步骤实质是EM算法(最大期望算法)的模型优化过程,具体步骤如下:

  1. 随机选择k个样本作为初始簇类的均值向量

  2. 将每个样本数据集划分到离它距离最近的簇

  3. 根据每个样本所属的簇,更新簇类的均值向量

  4. 重复(2)(3)步,当达到最大迭代次数或簇类的均值向量不再改变

代码实现:

数据处理:

import pandas as pd
import numpy as np# https://sci2s.ugr.es/keel/dataset.php?cod=182#inicio
df = pd.read_csv('banana.dat', header=None)def get_data():return np.array(df.iloc[:, :2])

核心代码:

from data_processing import get_data
import numpy as np
import matplotlib.pyplot as plt# 初始化聚类中心
def init_centroids(data: np.array, k: int) -> np.array:return data[np.random.choice(data.shape[0], k, replace=False)]# 欧拉距离
def euclidean_distance(x: np.array, y: np.array) -> float:return np.sqrt(np.sum(np.square(x - y)))# 计算每个样本点到k个聚类中心的距离
def compute_distance(data: np.array, centroids: np.array) -> np.array:distance = np.zeros((data.shape[0], centroids.shape[0]))for i in range(centroids.shape[0]):distance[:, i] = np.apply_along_axis(euclidean_distance, 1, data, centroids[i])return distance# KMeans算法
def kmeans(data: np.array, k: int, max_iter: int = 10):centroids = init_centroids(data, k)for i in range(max_iter):distance = compute_distance(data, centroids)# 每个样本点到k个聚类中心的距离最小值的索引labels = np.argmin(distance, axis=1)for j in range(k):centroids[j] = np.mean(data[labels == j], axis=0)return labels, centroidsif __name__ == '__main__':data = get_data()k = 3centroids = init_centroids(data, k)labels, centroids = kmeans(data, k)# print(labels.shape)plt.title('K-Means Clustering', fontsize=16)plt.xlabel('Feature 1', fontsize=14)plt.ylabel('Feature 2', fontsize=14)plt.scatter(data[:, 0], data[:, 1], c=labels, cmap='viridis')plt.show()

在这里插入图片描述

机器学习之K-Means(k均值)算法_k-means算法-CSDN博客

相关文章:

机器学习:k均值

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com),欢迎查看。 在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律&…...

保姆级GitHub大文件(100mb-2gb)上传教程

GLF(Git Large File Storage)安装使用 使用GitHub desktop上传大于100mb的文件时报错 The following files are over 100MB. lf you commit these files, you will no longer beable to push this repository to GitHub.com.term.rarWe recommend you a…...

1.【BUUCTF】[SUCTF 2019]EasyWeb

进入题目页面如下 给出源码开始代码审计 <?php // 定义一个名为 get_the_flag 的函数&#xff0c;该函数主要处理文件上传逻辑 function get_the_flag(){// 构造用户上传文件的目录&#xff0c;目录名是 "upload/tmp_" 加上客户端 IP 地址的 MD5 哈希值$userdir…...

CloudberryDB(七)二级索引

在CloudberryDB中&#xff0c;二级索引的概念与PostgreSQL中的类似。但是&#xff0c;由于分布式特性&#xff0c;创建和使用二级索引需要考虑一些额外的因素。以下是关于二级索引的一些要点&#xff1a; 1. **创建索引**&#xff1a;在Greenplum中&#xff0c;可以使用CREATE…...

P1878 舞蹈课(详解)c++

题目链接&#xff1a;P1878 舞蹈课 - 洛谷 | 计算机科学教育新生态 1.题目解析 1&#xff1a;我们可以发现任意两个相邻的都是异性&#xff0c;所以他们的舞蹈技术差值我们都要考虑&#xff0c;4和2的差值是2&#xff0c;2和4的差值是2&#xff0c;4和3的差值是1&#xff0c;根…...

何须付费免费它不香吗

聊一聊 又是一年开学季。 开学了发一些应时期的小软件。 今天给大家分享一款学校班级课程表工具。 这款工具可以投放在学校电子大屏上。 支持学校的白板软件。 软件介绍 学校班级课程表 工具界面清爽&#xff0c;信息能一目了然。 虽然看感觉功能简单&#xff0c;但每个…...

ELK组成及实现原理

ELK是由三个主要组件组成的日志处理和搜索平台&#xff0c;分别是&#xff1a; Elasticsearch&#xff1a;Elasticsearch 是一个基于Lucene构建的开源搜索引擎&#xff0c;提供强大的搜索、分析功能。它负责存储和索引所有数据&#xff0c;并提供实时搜索能力。数据可以通过HTT…...

【Vue3源码解析】响应式原理

源码环境搭建 【Vue3源码解析】应用实例创建及页面渲染-CSDN博客 写文章时的Vue 版本&#xff1a; "version": "3.5.13",针对单个包进行开发环境打包、测试。 pnpm run dev reactivityreactive 创建响应式对象 packages/reactivity/src/reactive.ts …...

servlet中的ServletContext

设置、获取ServletContext配置信息 与ServletConfig不同的是&#xff0c;所有Servlet共享一份ServletContext 在web.xml中设置配置信息 <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"https://jakarta.ee/xml/ns/jakartaee"x…...

第1825天 | 我的创作纪念日:缘起、成长经历、大方向

目录 缘起一、成为创作者的初心&#xff08;一&#xff09;好记性不如烂笔头&#xff08;二&#xff09;文档可以帮助多个人解决同一个问题&#xff08;三&#xff09;加深自己对问题的理解&#xff0c;对技术的研究 二、实战项目中的经验分享&#xff08;一&#xff09;项目背…...

如何在 Mac 上解决 Qt Creator 安装后应用程序无法找到的问题

在安装Qt时&#xff0c;遇到了一些问题&#xff0c;尤其是在Mac上安装Qt后&#xff0c;发现Qt Creator没有出现在应用程序中。通过一些搜索和操作&#xff0c;最终解决了问题。以下是详细的记录和解决方法。 1. 安装Qt后未显示Qt Creator 安装完成Qt后&#xff0c;启动应用程…...

Java 设计模式之迭代器模式

文章目录 Java 设计模式之迭代器模式概述UML代码实现Java的迭代器 Java 设计模式之迭代器模式 概述 迭代器模式(Iterator)&#xff0c;提供一种方法顺序访问一个聚合对象中的各个元素&#xff0c;而又不暴露该对象的内部表示。 UML Iterator&#xff1a;迭代器接口&#xff…...

登录演示和功能拆解

登录演示和功能拆解 表单基础校验实现 1. 基础双向绑定 <template><el-form><el-form-item label"账号"><el-input v-model"formData.username" /></el-form-item><el-form-item label"密码"><el-inpu…...

DeepSeek深度求索API多线程批量写原创文章软件-ai痕迹极低

DeepSeek是一款由国内人工智能公司研发的大型语言模型&#xff0c;拥有强大的自然语言处理能力&#xff0c;能够理解并回答问题&#xff0c;还能辅助写代码、整理资料和解决复杂的数学问题。 与OpenAI开发的ChatGPT相比&#xff0c;DeepSeek不仅率先实现了媲美OpenAI-o1模型的…...

Redis进阶使用

在日常工作中&#xff0c;使用Redis有什么需要注意的&#xff1f; 设置合适的过期时间。尽量避免大key问题&#xff0c;避免用字符串存储过大的数据&#xff1b;避免集合的数据量太大&#xff0c;要定期清除。 常用的数据结构有哪些&#xff1f;用在什么地方&#xff1f; 按…...

Python常见面试题的详解6

1. 按字典 value 值排序 要点&#xff1a;对于给定字典&#xff0c;使用 sorted() 函数结合 items() 方法&#xff0c;依据 value 进行排序&#xff0c;也可以定义一个通用函数&#xff0c;支持按 value 升序或降序排序。示例&#xff1a; python d {a: 1, b: 2, c: 3, d: …...

Linux基础之文件权限的八进制表示法

1. Linux 文件权限概述 在 Linux 中&#xff0c;每个文件或目录都有三种基本权限&#xff0c;分别是&#xff1a; 读权限 - r&#xff1a;允许查看文件内容。写权限 - w&#xff1a;允许修改文件内容。执行权限 - x&#xff1a;允许执行文件或进入目录。 每个文件或目录的权…...

数据结构与算法面试专题——堆排序

完全二叉树 完全二叉树中如果每棵子树的最大值都在顶部就是大根堆 完全二叉树中如果每棵子树的最小值都在顶部就是小根堆 设计目标&#xff1a;完全二叉树的设计目标是高效地利用存储空间&#xff0c;同时便于进行层次遍历和数组存储。它的结构使得每个节点的子节点都可以通过简…...

《On Java进阶卷》阅读笔记(五)

第7章 IO系统 I/O流&#xff1a; IO有很多不同的来源和去处&#xff0c;如文件、控制台网络连接等&#xff0c;而且还涉及需求以很多种方式&#xff0c;如顺序读取、随机访问、缓冲、字符、按行读取、按字读取等。 Java8的函数式流相关的类和IO流之间并无关联。 IO流隐藏了…...

《代码随想录》刷题笔记——回溯篇【java实现】

文章目录 组合组合总和 III电话号码的字母组合组合总和组合总和II思路代码实现 分割回文串※思路字符串分割回文串判断效率优化※ 复原 IP 地址优化版本 子集子集 II使用usedArr辅助去重不使用usedArr辅助去重 递增子序列※全排列全排列 II重新安排行程题意代码 N 皇后解数独直…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...