[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
文章目录
- 一、前言
- 二、主要贡献
- 三、Introduction
- 四、Methodology
- 4.1 Motivation :
- 4.2Framework Overview.**
一、前言
通信作者是香港理工大学 & OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。 论文如下
SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution[paper][code]
二、主要贡献
提出语义感知的方式来保持Real ISR 中的语义保真度。主要包括以下步骤
- 训练退化感知提示词提取器(degradationaware prompt extractor) 可以在大的退化图像中同时生成软语义提示词和硬语义提示词,提升T2I模型生成充满细节且语义准确的结果。
- 在推理阶段,将LR 图像的信息融入初始采样噪声,缓解扩散模型产生过多额外细节的趋势。
三、Introduction
一些常规的介绍。数据方面从单一退化到多种退化,模型方面从GAN发展到了DDPMs。由于大规模预训练的文本到图像模型(T2I)包含大量的文本图像配对数据,包含了丰富的自然图像先验,因此需要作者开始挖掘这种模型的潜力 。StableSR、PASD、DiffBIR就是利用T2I模型作为预训练,进行Real-ISR任务。但是他们存在一定局限性,例如StableSR和DiffBIR 仅依靠LR图像作为控制信号,忽略了语义文本信息在预训练的T2I模型中的作用,PASD模型尝试使用现成的high-level模型提取语义提示词作为额外的控制信息,但是如果LQ图像包含太多物体或者退化太多严重,这个方式就会失效。
这篇工作
这篇文章深入研究如何提取如何才能更有效的提取提示词来充分利用T2I模型的潜力,并总结了两个关键点:1、提示词应该覆盖尽可能多的对象,帮助模型理解不同的局部区域,2、提示词应该是退化感知的,要避免错误的语义恢复结果。
基于这两点,作者提出这个方法Semantic-aware SR (SeeSR),这个模型可以使用高质量的语义提示词来增加T2I模型在Real-SR方向上的潜力,这个方法包括两个阶段。1、微调语义提示词提取器,使它获得退化感知能力。2、语义提示词、LR图像共同输入T2I模型进行精细的控制,其中推理阶段还将LR图像的信息嵌入到初始采样噪声中避免生成过多的随机细节。
四、Methodology
4.1 Motivation :
为了释放预训练的 T2I 模型的生成潜力,同时避免 Real-ISR 输出中的语义失真!
作者研究了三种语义提升风格,分别是 classification-style, caption-style ,tag-style.。经过对比,发现他们有如下的特点:
作者认为classification-style 缺少局部物体的信息,caption-style 会出现介词和副词,影响注意力,在存在降质的前提下,有可能语义提示错误导致错误的结果;tag-style 可以提供大量的物体信息,但是有着和caption-style一样的问题,在降质情况下,可能会导致错误的语义信息。
具体的比较可以看图1,不同种类提示词的结果:

作者认为,可以在tag-style基础上加上降质感知就可以得到较好的结果。

4.2Framework Overview.**
基于上述讨论,作者确定了整体的任务框架,主要目的是提取高质量的tag-style 提示词用来发挥T2I模型的潜力。下图是整体的任务框架。

首先是学习退化感知提示词提取器degradation-aware prompt extractor (DAPE),这个提取器包括image encoder 和 tagging head。这个提取器的目的就是让LR提取的提示词和HR提取的提示词尽可能接近。然后输出两个特征,分别是feature representations 以及 tags。这两个东西用来控制T2I模型的生成过程。
第一阶段学习DAPE模块,使用LR、HR的输出作为约束

第二阶段是将提示词以及LR image 通过交叉注意力模块控制预训练T2I模型。

最后是细节的处理,在推理阶段,LR的信息嵌入到初始采样噪声中,作者说这样是很有效果的,具体对比图如下

如果没有LRE模块,那么可能将一些退化增强为细节,如果有这个模块,那么整体生成就更加正常了。
具体实验图见论文
相关文章:
[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
文章目录 一、前言二、主要贡献三、Introduction四、Methodology4.1 Motivation :4.2Framework Overview.** 一、前言 通信作者是香港理工大学 & OPPO研究所的张磊教授,也是图像超分ISR的一个大牛了。 论文如下 SeeSR: Towards Semantics-Aware Rea…...
Python实战进阶 No1: RESTful API - 基于Flask的实例说明
Python实战进阶 No1: RESTful API - 基于Flask的实例说明 RESTful API 是一种基于 REST(Representational State Transfer) 架构风格的 Web 服务接口设计规范。它使用 HTTP 协议的标准方法(如 GET、POST、PUT、DELETE 等)来操作资…...
Redis——优惠券秒杀问题(分布式id、一人多单超卖、乐悲锁、CAS、分布式锁、Redisson)
#想cry 好想cry 目录 1 全局唯一id 1.1 自增ID存在的问题 1.2 分布式ID的需求 1.3 分布式ID的实现方式 1.4 自定义分布式ID生成器(示例) 1.5 总结 2 优惠券秒杀接口实现 3 单体系统下一人多单超卖问题及解决方案 3.1 问题背景 3.2 超卖问题的…...
OpenCV机器学习(5)逻辑回归算法cv::ml::LogisticRegression
OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::ml::LogisticRegression 是 OpenCV 机器学习模块中的一个类,用于实现逻辑回归算法。逻辑回归是一种广泛应用于分类问题的统计方法,特别适合二分类任务。…...
百度百舸 DeepSeek 一体机发布,支持昆仑芯 P800 单机 8 卡满血版开箱即用
在私有云环境中成功部署 DeepSeek 满血版并实现性能调优,并不是一件容易的事情。选择合适的 GPU 配置、安装相应的环境、成功部署上线业务、加速推理任务加速、支撑多用户并发 …… 完成业务测试,成功融入生产业务中。 为了帮助企业快速实现 DeepSeek 服…...
批处理效率提升技巧
在数据量大的后端应用程序中进行批处理(batch processing)是非常常见的需求,尤其是在需要处理大量数据或进行周期性任务时。批处理的目的是通过将数据分批次处理来提高效率,减少资源消耗,并确保应用程序的可伸缩性。以下是一些在这种场景下进行批处理的方法和实践: 一、…...
Kubernetes知识点总结(十)
什么是 K8s 的 namespace? 在 K8s 中,Namespace(名字空间)提供了一种机制,将同一集群中的资源划分为相互隔离的组, 是在多个用户之间划分集群资源的一种方法。 名字空间作用域仅针对带有名字空间的对…...
安全防御综合练习2 nat+智能选路
一、拓扑 二、需求 1、在企业出口防火墙上,设置一个“虚拟DNS服务器”,将内网用户的DNS设定为这个虚拟DNS服务器的地址 2、当内网用户发送DNS请求时,虚拟DNS服务器作为中间人,根据预配置算法,将DNS请求报文发送给各个…...
Flutter 中的数据跨层传递方案
在 Flutter 中,数据跨层传递(从父组件向子组件传递数据,或从子组件向父组件传递)有多种方案,主要包括以下几种: 1. 直接参数传递(Constructor 参数) 适用场景: 父组件向…...
代码随想录D50-51 图论 Python
理论基础 理论基础部分依然沿用代码随想录教程中的介绍: 图的种类 度 连通性 连通性用于表示图中节点的连通情况。 如果有节点不能到达其他节点,则为非连通图,想象将多个水分子表示为图,不考虑非键作用,这张图就不是…...
MyBatis进阶
日志的使用 我们在使用MyBatis的时候, 其实MyBatis框架会打印一些必要的日志信息, 在开发阶段这些日志信息对我们分析问题,理解代码的执行是特别有帮助的; 包括项目上线之后,我们也可以收集项目的错误日志到文件里面去; 所以我们采用专门的日志系统来处理. 步骤 导入坐标拷贝…...
容器化部署Kafka的最佳实践:基于KRaft模式的无ZooKeeper方案
一、docker 部署kafka单节点 1.1安装docker 可以参考这篇CentOS 7安装docker并配置镜像加速 1.3 运行kafka(注意修改zookeeper,kafka地址) docker run -d --name kafka -e KAFKA_ADVERTISED_LISTENERSPLAINTEXT://172.16.10.180:9092 -p …...
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 DeepSeek大模型技术系列一DeepSeek核心算法解析:如何…...
LeetCode-633. 平方数之和
1、题目描述 给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 b2 c 。 示例 1: 输入:c 5 输出:true 解释:1 * 1 2 * 2 5示例 2: 输入:c 3 输出:f…...
前端面试技巧与实践
在当今快速发展的互联网行业中,前端开发已经成为了一个至关重要的角色。随着技术的不断进步和用户需求的日益复杂,前端工程师的职责不再仅仅是实现页面的布局和交互,而是需要具备全方位的技术能力和工程思维。根据2023年Stack Overflow的开发…...
windows Redis Insight 如何查看宝塔docker里的redis数据
1、ping 命令用于测试网络连通性,它只需要目标 IP 地址作为参数,不需要端口号。正确的命令如下: ping 公网地址2、使用 Telnet 测试端口连通性 telnet 公网地址 端口 telnet 47.108.67.228 6379如果连接成功,窗口会变为空白&am…...
sql数据执行失败,三个命令依次执行
set global innodb_strict_mode off set global.sql_mode ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION; set sql_mode ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION;...
BGP配置华为——RR反射器配置
实验拓扑 与之前实验同理将loop0作为routerID使用,且R1和R2上用loop1接口用于模拟用户其他网段 实验要求 1,在AS100内运行OSPF协议 2.配置路由反射器,使得从R1进入的数据能够反射到全局网络 3.在R1和R2上分别宣告自己的loop1口网段用于观…...
基于Flask的艺恩影片票房分析系统的设计与实现
【Flask】基于Flask的艺恩影片票房分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统利用Python编程语言进行后端开发,结合Echarts进行数据的可视化展示&a…...
架构设计系列(三):架构模式
一、概述 关于移动应用开发中常见的架构模式,这些模式是为了克服早期模式的局限性而引入。常见的 架构模式有: MVC, MVP, MVVM, MVVM-C, and VIPER 二、MVC, MVP, MVVM, MVVM-C, and VIPER架构模式 MVC、MVP、MVVM、MVVM-C 和 VIPER 是移动应用开发中…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
