当前位置: 首页 > news >正文

dify实现分析-rag-关键词索引的实现

概述

在dify中有两种构建索引的方式,一种是经济型,另一种是高质量索引(通过向量数据库来实现)。其中经济型就是关键词索引,通过构建关键词索引来定位查询的文本块,而关键词索引的构建是通过Jieba这个库来完成的。

Jieba(“结巴”)是一个强大的中文分词和关键词提取工具库。在dify中,Jieba类作为一个基于关键词的文档检索系统的核心实现。

本文介绍关键词索引的构建类Jieba类的实现,包括:文本的索引的添加,修改等操作。

Jieba类的构成

Jieba类
基础功能
数据管理
搜索功能
关键词提取
分词处理
关键词表管理
存储策略
关键词搜索
文档检索

关键词索引创建

总体实现逻辑

关键词索引创建在create函数中实现,该函数的声明如下:

    def create(self, texts: list[Document], **kwargs) -> BaseKeyword:

该函数的主要逻辑如下:

开始创建关键词索引
获取Redis分布式锁
检查关键词表是否存在,若不存在,创建关键词表:dataset_keyword_tables
遍历文件分块列表: Document对象列表
关键词提取: extract_keywords
更新段落关键词
更新关键词表: 把关键词保存到字典中
保存关键词表: 保存关键词表到数据库或文件系统
返回实例
关键词提取:extract_keywords

关键词提取主要完成:从文本中提取关键词,支持停用词过滤和子词提取。extract_keywords函数的声明如下:

    def extract_keywords(self, text: str, max_keywords_per_chunk: Optional[int] = 10) -> set[str]:

该函数的处理流程如下:

输入文本
TFIDF关键词提取
子词拆分
停用词过滤
返回关键词集合
def extract_keywords(self, text: str, max_keywords_per_chunk: Optional[int] = 10) -> set[str]:"""Extract keywords with JIEBA tfidf."""# 1. 使用TFIDF算法提取关键词keywords = jieba.analyse.extract_tags(sentence=text,topK=max_keywords_per_chunk,  # 默认最多10个关键词)# 2. 扩展子词并过滤停用词return set(self._expand_tokens_with_subtokens(keywords))
def _expand_tokens_with_subtokens(self, tokens: set[str]) -> set[str]:"""获取tokens的子词,并过滤停用词"""results = set()for token in tokens:# 1. 添加原始tokenresults.add(token)# 2. 使用正则提取子词sub_tokens = re.findall(r"\w+", token)# 3. 如果存在多个子词if len(sub_tokens) > 1:# 过滤停用词并添加到结果集results.update({w for w in sub_tokens if w not in list(STOPWORDS)})return results
关键词存储

关键词存储的函数声明如下:

def _save_dataset_keyword_table(self, keyword_table):

其中处理完成的关键词,都已经保存到dataset_keyword_tables字典中了。

接收关键词表
构建元数据字典
判断存储类型
数据库存储: database
文件存储: file
JSON序列化
构建文件路径
检查文件是否存在: 若存在删除之
保存文件

该函数的详细实现如下:

    # 这段代码的主要功能是将一个关键词表 (dataset_keyword_tables) 保存到数据库或文件中,具体取决于数据源类型。def _save_dataset_keyword_table(self, keyword_table):# 创建数据字典,保存元数据信息keyword_table_dict = {"__type__": "keyword_table","__data__": {"index_id": self.dataset.id, "summary": None, "table": keyword_table},}# 记录数据集的数据来源类型dataset_keyword_table = self.dataset.dataset_keyword_tablekeyword_data_source_type = dataset_keyword_table.data_source_type# 数据源是数据库,则将字典编码为 JSON 字符串,并更新数据库中的 keyword_table 字段。然后提交事务。if keyword_data_source_type == "database":dataset_keyword_table.keyword_table = json.dumps(keyword_table_dict, cls=SetEncoder)db.session.commit()else:# 来源是文件,则构建一个文件键(路径),检查文件是否存在,如果存在则删除file_key = "keyword_files/" + self.dataset.tenant_id + "/" + self.dataset.id + ".txt"if storage.exists(file_key):storage.delete(file_key)# 最后将字典编码为 JSON 并保存到指定的文件路径。storage.save(file_key, json.dumps(keyword_table_dict, cls=SetEncoder).encode("utf-8"))
class SetEncoder(json.JSONEncoder):"""自定义JSON编码器,处理set类型"""def default(self, obj):if isinstance(obj, set):return list(obj)  # 将set转换为listreturn super().default(obj)

关键词查询

获取关键词表名,从表中查询对应数据集的关键词字典
获取top-k参数
提取查询字符串中的关键词,根据查询关键词在文档切片关键词中进行查询,并对结果排序
按排序切片索引id从数据库表中查询文档内容
构建Document对象
返回Document对象列表

search函数的详细实现分析:

    def search(self, query: str, **kwargs: Any) -> list[Document]:# 从dataset_keyword_tables表中获取对应数据集的数据分块记录字典keyword_table = self._get_dataset_keyword_table()k = kwargs.get("top_k", 4)# (1)使用Jieba对用户输入的查询字符串进行关键词提取# (2)然后从刚才查询出来的关键词字典中,查询出与查询字符串中关键词匹配的文本索引idsorted_chunk_indices = self._retrieve_ids_by_query(keyword_table, query, k)documents = []# 根据文本块索引id,从数据库中查询出对应的文本块内容for chunk_index in sorted_chunk_indices:segment = (db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == self.dataset.id, DocumentSegment.index_node_id == chunk_index).first())# 以Document对象结构来返回结果if segment:documents.append(Document(page_content=segment.content,metadata={"doc_id": chunk_index,"doc_hash": segment.index_node_hash,"document_id": segment.document_id,"dataset_id": segment.dataset_id,},))return documents

小结

说明,分析到这里,我们基本上就了解了关键词查询的基本原理:对用户查询字符串进行分词处理(通过Jieba库),根据分词结果在对应数据集中查询对应分词,然后获取该分词对应的文本和文本块。

可见,关键词索引主要是依赖对文本进行分词,然后通过分词来进行匹配,从而找到对应文本块的数据。这种方式并没有从语义角度去理解文本,本质上是通过分词得到的关键词进行匹配的方式来找到对应文本块。与通过语义的方式来查找文本,这种方式会存在一定的局限性。

关键词添加和删除

关键词的添加和删除都是要先从数据表或文件中把该数据集原有关键词读取到一个字典中,然后对该字典中的关键词进行添加或删除操作,然后再把数据写回数据表或文件。

(1)先查询数据集对应的关键词表(或文件)的数据,并以字典的方式返回

(2)在字典中添加对应关键词

(3)把添加完关键词的字典再写回关键词存储表或文件中

关键词的删除和关键词添加步骤类似,只是在第二步会从获取到的字段中把关键词删除,然后再写回数据表或文件中。

总结

关键词索引方式不需要其他额外的存储组件就可以完成索引的构建,成本相对比较低,比较经济实惠。但该方式是通过分词和关键词匹配方式来构建的文本块查询,比起通过向量和语义匹配的方式,有一定的局限性,选择那种方式,需要根据具体的场景来确定。

相关文章:

dify实现分析-rag-关键词索引的实现

概述 在dify中有两种构建索引的方式,一种是经济型,另一种是高质量索引(通过向量数据库来实现)。其中经济型就是关键词索引,通过构建关键词索引来定位查询的文本块,而关键词索引的构建是通过Jieba这个库来完…...

【小白学HTML5】一文讲清常用单位(px、em、rem、%、vw、vh)

html5中,常用的单位有px、em、rem、%、vw、vh(不常用)、cm、m等,这里主要讲解px、em、rem、%、vw。 学习了解:主流浏览器默认的字号:font-size:16px,无论用什么单位,浏览器最终计算…...

Fastgpt学习(5)- FastGPT 私有化部署问题解决

1.☺ 问题描述: Windows系统,本地私有化部署,postgresql数据库镜像日志持续报错" data directory “/var/lib/postgresql/data” has invalid permissions ",“ DETAIL: Permissions should be urwx (0700) or urwx,gr…...

ubuntu下安装TFTP服务器

在 Ubuntu 系统下安装和配置 TFTP(Trivial File Transfer Protocol)服务器可以按照以下步骤进行: 1. 安装 TFTP 服务器软件包 TFTP 服务器通常使用 tftpd-hpa 软件包,你可以使用以下命令进行安装: sudo apt update …...

深入解析 iText 7:从 PDF 文档中提取文本和图像

在现代开发中,PDF 文件的操作是不可避免的一部分。无论是生成报告、解析文档,还是从文件中提取信息,我们常常需要处理 PDF 文件。iText 是一个非常强大的库,广泛应用于 PDF 文件的创建、修改和解析。自 iText 7 发布以来&#xff…...

Rust编程语言入门教程 (六)变量与可变性

Rust 系列 🎀Rust编程语言入门教程(一)安装Rust🚪 🎀Rust编程语言入门教程(二)hello_world🚪 🎀Rust编程语言入门教程(三) Hello Cargo&#x1f…...

事务--实操演示

目录 一、准备工作 二、在MySQL中操作事务(重点) 第一种方式:使用命令的方式 第二种方式:设置MySQL事务不默认提交的方式 结 三、在JDBC中操作事务(掌握) 第一种方式:使用命令的方式 第…...

PHP是如何并行异步处理HTTP请求的?

文章精选推荐 1 JetBrains Ai assistant 编程工具让你的工作效率翻倍 2 Extra Icons:JetBrains IDE的图标增强神器 3 IDEA插件推荐-SequenceDiagram,自动生成时序图 4 BashSupport Pro 这个ides插件主要是用来干嘛的 ? 5 IDEA必装的插件&…...

【Spring详解一】Spring整体架构和环境搭建

一、Spring整体架构和环境搭建 1.1 Spring的整体架构 Spring框架是一个分层架构,包含一系列功能要素,被分为大约20个模块 Spring核心容器:包含Core、Bean、Context、Expression Language模块 Core :其他组件的基本核心&#xff…...

在 Vue 3 中使用 Lottie 动画:实现一个加载动画

在现代前端开发中,动画是提升用户体验的重要元素之一。Lottie 是一个流行的动画库,它允许我们使用 JSON 文件来渲染高质量的动画。本文将介绍如何在 Vue 3 项目中集成 Lottie 动画,并实现一个加载动画效果。 如果对你有帮助请帮忙点个&#x…...

深度解析:使用 Headless 模式 ChromeDriver 进行无界面浏览器操作

一、问题背景(传统爬虫的痛点) 数据采集是现代网络爬虫技术的核心任务之一。然而,传统爬虫面临多重挑战,主要包括: 反爬机制:许多网站通过检测请求头、IP地址、Cookie等信息识别爬虫,进而限制…...

MySQL 主从复制原理及其工作过程

一、MySQL主从复制原理 MySQL 主从复制是一种将数据从一个 MySQL 数据库服务器(主服务器,Master)复制到一个或多个 MySQL 数据库服务器(从服务器,Slave)的技术。以下简述其原理,主要包含三个核…...

计算机网络抄手 运输层

一、运输层协议概述 1. 进程之间的通信 从通信和信息处理的角度看,运输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最低层。当网络边缘部分的两台主机使用网络核心部分的功能进行端到端的通信时&…...

字符串函数和结构题内存对齐

图下为函数使用&#xff1a; #include <ctype.h>int main() {int ret isdigit(Q);printf("%d\n", ret);return 0; }int main() {printf("%c\n", toupper(a));printf("%c\n", tolower(A));return 0; }...

【嵌入式Linux应用开发基础】特殊进程

目录 一、守护进程&#xff08;Daemon Process&#xff09; 1.1. 概念 1.2. 特点 1.3. 守护进程的命名 1.4. 创建守护进程的步骤 1.5. 守护进程的实例 1.6. 守护进程的管理 1.7. 影响与处理 二、僵尸进程&#xff08;Zombie Process&#xff09; 2.1. 僵尸进程的定义…...

深度学习pytorch之19种优化算法(optimizer)解析

提示&#xff1a;有谬误请指正 摘要 本博客详细介绍了多种常见的深度学习优化算法&#xff0c;包括经典的LBFGS 、Rprop 、Adagrad、RMSprop 、Adadelta 、ASGD 、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等&#xff0c;通过对这些算法的公式和参数说明进行详细解析…...

rust笔记5-derive属性2

在 Rust 中,derive 是一种自动为结构体或枚举实现特定 trait 的机制。通过 #[derive(...)] 属性,Rust 编译器可以自动生成一些常见 trait 的实现代码,从而减少手动编写重复代码的工作量。 以下是对 Copy、Clone、Hash 和 Default 这几个常用 trait 的详细介绍和示例: 1. C…...

DeepSeek、微信、硅基流动、纳米搜索、秘塔搜索……十种不同方法实现DeepSeek使用自由

为了让大家实现 DeepSeek 使用自由&#xff0c;今天分享 10 个畅用 DeepSeek 的平台。 一、官方满血版&#xff1a;DeepSeek官网与APP 首推&#xff0c;肯定是 DeepSeek 的官网和 APP&#xff0c;可以使用满血版 R1 和 V3 模型&#xff0c;以及联网功能。 网址&#xff1a; htt…...

介绍cherrypick

git cherry-pick 是 Git 中的一个强大命令&#xff0c;用于将一个或多个提交&#xff08;commit&#xff09;从一个分支应用到另一个分支。它允许你选择性地将特定的变更引入到当前分支&#xff0c;而无需合并整个分支。以下是对 git cherry-pick 操作的详细介绍&#xff1a; 1…...

HTTP、HTTPS区别可靠性及POST为什么比GET安全的探讨

一、简述HTTP协议 HTTP底层是TCP实现&#xff0c;TCP是一个可靠的传输层网络协议&#xff0c;但是可靠性不是安全性——可靠但不安全 1、为什么TCP可靠&#xff1f;UDP不可靠&#xff1f; 可靠指的是源和目标可以相互访问以及确保数据的传输顺序&#xff0c;我能通过IP端口访…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...