《Keras 3 :使用 Vision Transformers 进行物体检测》:此文为AI自动翻译
《Keras 3 :使用 Vision Transformers 进行物体检测》
作者:Karan V. Dave
创建日期:2022 年 3 月 27
日最后修改时间:2023 年 11 月 20
日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。
在 Colab 中查看
GitHub 源
介绍
Alexey Dosovitskiy 等人的文章 Vision Transformer (ViT) 架构。 表明直接应用于图像序列的纯 transformer 补丁可以在对象检测任务中表现良好。
在这个 Keras 示例中,我们实现了一个对象检测 ViT 我们在加州理工学院 101 数据集上对其进行训练,以检测给定图像中的飞机。
导入和设置
import osos.environ["KERAS_BACKEND"] = "jax" # @param ["tensorflow", "jax", "torch"]import numpy as np
import keras
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import scipy.io
import shutil
准备数据集
我们使用加州理工学院 101 数据集。
# Path to images and annotations
path_images = "./101_ObjectCategories/airplanes/"
path_annot = "./Annotations/Airplanes_Side_2/"path_to_downloaded_file = keras.utils.get_file(fname="caltech_101_zipped",origin="https://data.caltech.edu/records/mzrjq-6wc02/files/caltech-101.zip",extract=True,archive_format="zip", # downloaded file formatcache_dir="/", # cache and extract in current directory
)
download_base_dir = os.path.dirname(path_to_downloaded_file)# Extracting tar files found inside main zip file
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "101_ObjectCategories.tar.gz"), "."
)
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "Annotations.tar"), "."
)# list of paths to images and annotations
image_paths = [f for f in os.listdir(path_images) if os.path.isfile(os.path.join(path_images, f))
]
annot_paths = [f for f in os.listdir(path_annot) if os.path.isfile(os.path.join(path_annot, f))
]image_paths.sort()
annot_paths.sort()image_size = 224 # resize input images to this sizeimages, targets = [], []# loop over the annotations and images, preprocess them and store in lists
for i in range(0, len(annot_paths)):# Access bounding box coordinatesannot = scipy.io.loadmat(path_annot + annot_paths[i])["box_coord"][0]top_left_x, top_left_y = annot[2], annot[0]bottom_right_x, bottom_right_y = annot[3], annot[1]image = keras.utils.load_img(path_images + image_paths[i],)(w, h) = image.size[:2]# resize imagesimage = image.resize((image_size, image_size))# convert image to array and append to listimages.append(keras.utils.img_to_array(image))# apply relative scaling to bounding boxes as per given image and append to listtargets.append((float(top_left_x) / w,float(top_left_y) / h,float(bottom_right_x) / w,float(bottom_right_y) / h,))# Convert the list to numpy array, split to train and test dataset
(x_train), (y_train) = (np.asarray(images[: int(len(images) * 0.8)]),np.asarray(targets[: int(len(targets) * 0.8)]),
)
(x_test), (y_test) = (np.asarray(images[int(len(images
相关文章:
《Keras 3 :使用 Vision Transformers 进行物体检测》:此文为AI自动翻译
《Keras 3 :使用 Vision Transformers 进行物体检测》 作者:Karan V. Dave 创建日期:2022 年 3 月 27 日最后修改时间:2023 年 11 月 20 日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 A…...
java(spring boot)实现向deepseek/GPT等模型的api发送请求/多轮对话(附源码)
我们再启动应用并获取api密钥后就可以对它发送请求了,但是官方文档对于如何进行多轮对话以及怎么自定义参数并没有说的很清楚,给的模板也没有java的,因此我们需要自己实现。 import org.json.JSONArray; import org.json.JSONObject;import j…...
module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法
module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法 pip install opencv-python4.7.0.72 -i https://pypi.tuna.tsinghua.edu.cn/simple 测试: python -c"import cv2"...
将RocketMQ集成到了Spring Boot项目中,实现站内信功能
1. 添加依赖 首先,在pom.xml中添加RocketMQ的依赖: <dependencies><!-- Spring Boot Starter Web --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifac…...
Deepseek 怼CHATGPT实况
提示词: 用犀利的语言批评ChatGPT 深度思考(R1) 嗯,用户让我用犀利的语言批评ChatGPT。首先,我需要理解他们的动机。可能他们遇到了ChatGPT的某些问题,比如回答不准确或者缺乏深度,所以想表达不满。也有…...
基础篇11-图像分割(上)--阈值的方法
图像分割是图像处理的重要内容,是位于底层的图像处理、特征提取与上一层次的图像分析之间的关键步骤。图像分割的相关技术较多,分为三篇介绍。本节是上篇,介绍基于阈值的技术。 1 引言 图像分割是计算机视觉和图像处理中的核心任务之一&…...
[特殊字符] LeetCode 62. 不同路径 | 动态规划+递归优化详解
在解 LeetCode 的过程中,路径计数问题是动态规划中一个经典的例子。今天我来分享一道非常基础但极具代表性的题目——不同路径。不仅适合初学者入门 DP(动态规划),还能帮助你打下递归思维的基础。 本文将介绍: &…...
常用的 JVM 参数:配置与优化指南
文章目录 常用的 JVM 参数:配置与优化指南引言 1. 内存管理参数1.1 堆内存配置1.2 方法区(元空间)配置1.3 直接内存配置 2. 垃圾回收参数2.1 垃圾回收器选择2.2 GC 日志配置2.3 GC 调优参数 3. 性能监控参数3.1 堆内存转储3.2 JVM 监控3.3 远…...
【JavaWeb学习Day17】
Tlias智能学习系统(员工管理) 新增员工: 三层架构职责: Controller:1.接收请求参数(员工信息);2.调用service方法;3.响应结果。 具体实现: /***新增员工…...
DeepSeek 提示词:定义、作用、分类与设计原则
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
前端大文件上传
1. 开场概述 “大文件上传是前端开发中常见的需求,但由于文件体积较大,直接上传可能会遇到网络不稳定、服务器限制等问题。因此,通常需要采用分片上传、断点续传、并发控制等技术来优化上传体验” 2. 核心实现方案 “我通常会采用以下方案…...
JDK源码系列(一)Object
Object 概述 Object类是所有类的基类——java.lang.Object。 Object类是所有类的基类,当一个类没有直接继承某个类时,默认继承Object类Object类属于java.lang包下,此包下的所有类在使用时无需手动导入,系统会在程序编译期间自动…...
【Python 打造高效文件分类工具】
【Python】 打造高效文件分类工具 一、代码整体结构二、关键代码解析(一)初始化部分(二)界面创建部分(三)核心功能部分(四)其他辅助功能部分 三、运行与使用四、示图五、作者有话说 …...
大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1)
Paimon的下载及安装,并且了解了主键表的引擎以及changelog-producer的含义参考: 大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1) 利用Paimon表做lookup join,集成mysql cdc等参考: 大数据组件(四)快速入门实时数据…...
边缘安全加速(Edge Security Acceleration)
边缘安全加速(Edge Security Acceleration,简称ESA)是一种通过将安全功能与网络边缘紧密结合来提升安全性和加速网络流量的技术。ESA的目标是将安全措施部署到接近用户或设备的地方,通常是在网络的边缘,而不是将所有流…...
C/C++高性能Web开发框架全解析:2025技术选型指南
一、工业级框架深度解析(附性能实测) 1. Drogon v2.1:异步框架性能王者 核心架构: Reactor 非阻塞I/O线程池(参考Nginx模型) 协程实现:基于Boost.Coroutine2(兼容C11)…...
fedora 安装 ffmpeg 过程记录
参考博客:1. linux(centos)安装 ffmpeg,并添加 libx264库:https://blog.csdn.net/u013015301/article/details/140778199ffmpeg 执行时如添加参数 -vcodec libx264,会出现错误:Unknown encoder libx264’的错误,缺少li…...
【GPU驱动】OpenGLES图形管线渲染机制
OpenGLES图形管线渲染机制 OpenGL/ES 的渲染管线也是一个典型的图形流水线(Graphics Pipeline),包括多个阶段,每个阶段都负责对图形数据进行处理。管线的核心目标是将图形数据转换为最终的图像,这些图像可以显示在屏幕…...
Spring Boot项目@Cacheable注解的使用
Cacheable 是 Spring 框架中用于缓存的注解之一,它可以帮助你轻松地将方法的结果缓存起来,从而提高应用的性能。下面详细介绍如何使用 Cacheable 注解以及相关的配置和注意事项。 1. 基本用法 1.1 添加依赖 首先,确保你的项目中包含了 Spr…...
mac开发环境配置笔记
1. 终端配置 参考: Mac终端配置笔记-CSDN博客 2. 下载JDK 到 oracle官网 下载jdk: oracle官网 :Java Downloads | Oraclemac的芯片为Intel系列下载 x64版本的jdk;为Apple Mx系列使用 Arm64版本;oracle官网下载时报错:400 Bad R…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
