当前位置: 首页 > news >正文

《Keras 3 :使用 Vision Transformers 进行物体检测》:此文为AI自动翻译

《Keras 3 :使用 Vision Transformers 进行物体检测》

作者:Karan V. Dave
创建日期:2022 年 3 月 27
日最后修改时间:2023 年 11 月 20
日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


介绍

Alexey Dosovitskiy 等人的文章 Vision Transformer (ViT) 架构。 表明直接应用于图像序列的纯 transformer 补丁可以在对象检测任务中表现良好。

在这个 Keras 示例中,我们实现了一个对象检测 ViT 我们在加州理工学院 101 数据集上对其进行训练,以检测给定图像中的飞机。


导入和设置

import osos.environ["KERAS_BACKEND"] = "jax"  # @param ["tensorflow", "jax", "torch"]import numpy as np
import keras
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import scipy.io
import shutil

准备数据集

我们使用加州理工学院 101 数据集。

# Path to images and annotations
path_images = "./101_ObjectCategories/airplanes/"
path_annot = "./Annotations/Airplanes_Side_2/"path_to_downloaded_file = keras.utils.get_file(fname="caltech_101_zipped",origin="https://data.caltech.edu/records/mzrjq-6wc02/files/caltech-101.zip",extract=True,archive_format="zip",  # downloaded file formatcache_dir="/",  # cache and extract in current directory
)
download_base_dir = os.path.dirname(path_to_downloaded_file)# Extracting tar files found inside main zip file
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "101_ObjectCategories.tar.gz"), "."
)
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "Annotations.tar"), "."
)# list of paths to images and annotations
image_paths = [f for f in os.listdir(path_images) if os.path.isfile(os.path.join(path_images, f))
]
annot_paths = [f for f in os.listdir(path_annot) if os.path.isfile(os.path.join(path_annot, f))
]image_paths.sort()
annot_paths.sort()image_size = 224  # resize input images to this sizeimages, targets = [], []# loop over the annotations and images, preprocess them and store in lists
for i in range(0, len(annot_paths)):# Access bounding box coordinatesannot = scipy.io.loadmat(path_annot + annot_paths[i])["box_coord"][0]top_left_x, top_left_y = annot[2], annot[0]bottom_right_x, bottom_right_y = annot[3], annot[1]image = keras.utils.load_img(path_images + image_paths[i],)(w, h) = image.size[:2]# resize imagesimage = image.resize((image_size, image_size))# convert image to array and append to listimages.append(keras.utils.img_to_array(image))# apply relative scaling to bounding boxes as per given image and append to listtargets.append((float(top_left_x) / w,float(top_left_y) / h,float(bottom_right_x) / w,float(bottom_right_y) / h,))# Convert the list to numpy array, split to train and test dataset
(x_train), (y_train) = (np.asarray(images[: int(len(images) * 0.8)]),np.asarray(targets[: int(len(targets) * 0.8)]),
)
(x_test), (y_test) = (np.asarray(images[int(len(images

相关文章:

《Keras 3 :使用 Vision Transformers 进行物体检测》:此文为AI自动翻译

《Keras 3 :使用 Vision Transformers 进行物体检测》 作者:Karan V. Dave 创建日期:2022 年 3 月 27 日最后修改时间:2023 年 11 月 20 日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 A…...

java(spring boot)实现向deepseek/GPT等模型的api发送请求/多轮对话(附源码)

我们再启动应用并获取api密钥后就可以对它发送请求了,但是官方文档对于如何进行多轮对话以及怎么自定义参数并没有说的很清楚,给的模板也没有java的,因此我们需要自己实现。 import org.json.JSONArray; import org.json.JSONObject;import j…...

module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法

module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法 pip install opencv-python4.7.0.72 -i https://pypi.tuna.tsinghua.edu.cn/simple 测试: python -c"import cv2"...

将RocketMQ集成到了Spring Boot项目中,实现站内信功能

1. 添加依赖 首先&#xff0c;在pom.xml中添加RocketMQ的依赖&#xff1a; <dependencies><!-- Spring Boot Starter Web --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifac…...

Deepseek 怼CHATGPT实况

提示词&#xff1a; 用犀利的语言批评ChatGPT 深度思考&#xff08;R1) 嗯&#xff0c;用户让我用犀利的语言批评ChatGPT。首先&#xff0c;我需要理解他们的动机。可能他们遇到了ChatGPT的某些问题&#xff0c;比如回答不准确或者缺乏深度&#xff0c;所以想表达不满。也有…...

基础篇11-图像分割(上)--阈值的方法

图像分割是图像处理的重要内容&#xff0c;是位于底层的图像处理、特征提取与上一层次的图像分析之间的关键步骤。图像分割的相关技术较多&#xff0c;分为三篇介绍。本节是上篇&#xff0c;介绍基于阈值的技术。 1 引言 图像分割是计算机视觉和图像处理中的核心任务之一&…...

[特殊字符] LeetCode 62. 不同路径 | 动态规划+递归优化详解

在解 LeetCode 的过程中&#xff0c;路径计数问题是动态规划中一个经典的例子。今天我来分享一道非常基础但极具代表性的题目——不同路径。不仅适合初学者入门 DP&#xff08;动态规划&#xff09;&#xff0c;还能帮助你打下递归思维的基础。 本文将介绍&#xff1a; &…...

常用的 JVM 参数:配置与优化指南

文章目录 常用的 JVM 参数&#xff1a;配置与优化指南引言 1. 内存管理参数1.1 堆内存配置1.2 方法区&#xff08;元空间&#xff09;配置1.3 直接内存配置 2. 垃圾回收参数2.1 垃圾回收器选择2.2 GC 日志配置2.3 GC 调优参数 3. 性能监控参数3.1 堆内存转储3.2 JVM 监控3.3 远…...

【JavaWeb学习Day17】

Tlias智能学习系统&#xff08;员工管理&#xff09; 新增员工&#xff1a; 三层架构职责&#xff1a; Controller&#xff1a;1.接收请求参数&#xff08;员工信息&#xff09;&#xff1b;2.调用service方法&#xff1b;3.响应结果。 具体实现&#xff1a; /***新增员工…...

DeepSeek 提示词:定义、作用、分类与设计原则

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…...

前端大文件上传

1. 开场概述 “大文件上传是前端开发中常见的需求&#xff0c;但由于文件体积较大&#xff0c;直接上传可能会遇到网络不稳定、服务器限制等问题。因此&#xff0c;通常需要采用分片上传、断点续传、并发控制等技术来优化上传体验” 2. 核心实现方案 “我通常会采用以下方案…...

JDK源码系列(一)Object

Object 概述 Object类是所有类的基类——java.lang.Object。 Object类是所有类的基类&#xff0c;当一个类没有直接继承某个类时&#xff0c;默认继承Object类Object类属于java.lang包下&#xff0c;此包下的所有类在使用时无需手动导入&#xff0c;系统会在程序编译期间自动…...

【Python 打造高效文件分类工具】

【Python】 打造高效文件分类工具 一、代码整体结构二、关键代码解析&#xff08;一&#xff09;初始化部分&#xff08;二&#xff09;界面创建部分&#xff08;三&#xff09;核心功能部分&#xff08;四&#xff09;其他辅助功能部分 三、运行与使用四、示图五、作者有话说 …...

大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1)

Paimon的下载及安装&#xff0c;并且了解了主键表的引擎以及changelog-producer的含义参考&#xff1a; 大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1) 利用Paimon表做lookup join&#xff0c;集成mysql cdc等参考&#xff1a; 大数据组件(四)快速入门实时数据…...

边缘安全加速(Edge Security Acceleration)

边缘安全加速&#xff08;Edge Security Acceleration&#xff0c;简称ESA&#xff09;是一种通过将安全功能与网络边缘紧密结合来提升安全性和加速网络流量的技术。ESA的目标是将安全措施部署到接近用户或设备的地方&#xff0c;通常是在网络的边缘&#xff0c;而不是将所有流…...

C/C++高性能Web开发框架全解析:2025技术选型指南

一、工业级框架深度解析&#xff08;附性能实测&#xff09; 1. Drogon v2.1&#xff1a;异步框架性能王者 核心架构&#xff1a; Reactor 非阻塞I/O线程池&#xff08;参考Nginx模型&#xff09; 协程实现&#xff1a;基于Boost.Coroutine2&#xff08;兼容C11&#xff09;…...

fedora 安装 ffmpeg 过程记录

参考博客&#xff1a;1. linux(centos)安装 ffmpeg,并添加 libx264库&#xff1a;https://blog.csdn.net/u013015301/article/details/140778199ffmpeg 执行时如添加参数 -vcodec libx264&#xff0c;会出现错误&#xff1a;Unknown encoder libx264’的错误&#xff0c;缺少li…...

【GPU驱动】OpenGLES图形管线渲染机制

OpenGLES图形管线渲染机制 OpenGL/ES 的渲染管线也是一个典型的图形流水线&#xff08;Graphics Pipeline&#xff09;&#xff0c;包括多个阶段&#xff0c;每个阶段都负责对图形数据进行处理。管线的核心目标是将图形数据转换为最终的图像&#xff0c;这些图像可以显示在屏幕…...

Spring Boot项目@Cacheable注解的使用

Cacheable 是 Spring 框架中用于缓存的注解之一&#xff0c;它可以帮助你轻松地将方法的结果缓存起来&#xff0c;从而提高应用的性能。下面详细介绍如何使用 Cacheable 注解以及相关的配置和注意事项。 1. 基本用法 1.1 添加依赖 首先&#xff0c;确保你的项目中包含了 Spr…...

mac开发环境配置笔记

1. 终端配置 参考&#xff1a; Mac终端配置笔记-CSDN博客 2. 下载JDK 到 oracle官网 下载jdk: oracle官网 :Java Downloads | Oraclemac的芯片为Intel系列下载 x64版本的jdk&#xff1b;为Apple Mx系列使用 Arm64版本&#xff1b;oracle官网下载时报错&#xff1a;400 Bad R…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行&#xff1a; rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...