当前位置: 首页 > news >正文

DeepSeek VS ChatGPT-速度、准确性和成本

撰写本文时马斯克刚刚发布了聊天机器人Grok2,10万张算卡体现了马斯克的财大气粗。近年来,人工智能模型取得了长足的发展,每个模型都力求在速度、准确性和成本效率方面超越其他模型。在本文中,我将深入研究比较中美在AI的焦点模型上,即 DeepSeek 和 ChatGPT。这两个模型是 2025 年领先的生成式 AI 模型。我们的分析将重点关注它们在特定任务(例如编码和数据分析)中的表现、它们的能源效率和每个token的定价。

速度:哪种模型响应更快?

速度是 AI 应用的关键因素,因为响应时间会影响用户体验和生产力。查询国外资料类比信息,在类似条件下评估 DeepSeek 和 ChatGPT 的指标揭示了一些关键差异:

推理优化:DeepSeek 采用优化的推理技术,减少了响应延迟。在编码和数据分析任务中,与 ChatGPT 相比,DeepSeek 的响应时间快了 20-30%。

并行处理:DeepSeek 拥有增强的架构,可以同时处理多个请求,因此可以处理大量查询,且不会出现明显延迟。

上下文保留效率:DeepSeek 的长上下文内存管理允许在长时间对话中更快地检索相关信息,从而减少冗余处理。

虽然 ChatGPT 仍然是 OpenAI 基础设施支持的强大竞争对手,但 DeepSeek 高效的内存处理和推理优化使其在速度敏感型应用中占据优势。

准确性:它们对内容的理解和生成程度如何?

AI 模型的准确性取决于其正确理解提示并生成精确、符合上下文的响应的能力。在多个领域比较 DeepSeek 和 ChatGPT 可以突出以下几点:

自然语言理解 (NLU):DeepSeek 的多语言训练使其对语言有了更细致的理解,使其在非英语文本生成方面特别有效,尤其是在中文领域能更好理解中文问题甚至进行推理理解。

技术内容生成:在编码任务和数据分析测试中,DeepSeek 在生成无错误代码和准确数据洞察方面表现出更高的正确率 (85%),而 ChatGPT 的正确率为 78%。

事实核查和出错率:AI 模型有时会生成不正确或误导性的信息。DeepSeek 采用了先进的事实验证机制,与 ChatGPT 相比,出错率降低了 15%。

虽然两种模型在不同领域都有优势,但 DeepSeek 在专门任务中的准确性提高使其在技术和分析应用方面具有竞争优势。

成本:哪种模型更经济?

对于将 AI 集成到工作流中的企业和个人来说,成本是一个重要因素。DeepSeek 与 ChatGPT 的定价分析显示:

token定价:DeepSeek 提供了更具成本效益的定价模型,每个token的收费比 ChatGPT 低 30%,使其成为需要大规模 AI 运营的企业的理想选择。想象一下,Deepseek开源了,全世界包括欧洲和印度开始国产化了。

每次计算的效率:由于优化了硬件利用率,DeepSeek 每 GPU 小时处理的查询比 ChatGPT 多 20%,从而降低了运营成本。

订阅和 API 成本:OpenAi的高端会员模式,ChatGPT Pro价格高达200美元/月,DeepSeek 提供了非常便宜的定价(百万token才8元,早饭钱可能都不够),包括满足不同 AI 使用需求的企业的按使用付费选项。

能源效率:哪种 AI 模型更环保?

从我个人来说是不想套路这个点,感觉过于西方论题范畴,相信DeepSeek在创造模型的时候也不可能还想着环保话题。但是遵从绿色可持续性发展以及能源消耗是的确是 AI 开发中越来越重要的问题。比较两种模型的效率:

硬件利用率:DeepSeek 利用针对 NVIDIA GPU 和 TPU 的定制优化,与 ChatGPT 相比,能耗降低了 25%。

绿色 AI 计划:DeepSeek 集成了节能训练策略,例如模型提炼和修剪,从而降低了 AI 处理的碳足迹。

基于云的优化:DeepSeek 的基础设施动态调整计算资源,最大限度地减少不必要的能源消耗。

相比之下,ChatGPT 的基础设施虽然强大,但由于其大规模部署策略,对能源的需求更高。

结论:学习和使用DeepSeek

AI的未来毋庸置疑,想要不被时代抛弃,不被他人主宰命运,AI都是必须学习和掌握的技能。而考虑速度、技术准确性、多语言能力和成本效率,对中文的理解能力上,DeepSeek都是我们的不二选项。

附清华大学DeepSeek三部曲:

DeepSeek从入门到精通 - 好运工具

DeepSeek如何赋能职场应用?从提示语技巧到多场景应用 - 好运工具

普通人如何抓住DeepSeek红利 - 好运工具

相关文章:

DeepSeek VS ChatGPT-速度、准确性和成本

撰写本文时马斯克刚刚发布了聊天机器人Grok2,10万张算卡体现了马斯克的财大气粗。近年来,人工智能模型取得了长足的发展,每个模型都力求在速度、准确性和成本效率方面超越其他模型。在本文中,我将深入研究比较中美在AI的焦点模型上…...

内外网隔离文件传输解决方案|系统与钉钉集成+等保合规,安全提升70%

一、背景与痛点 在内外网隔离的企业网络环境中,员工与外部协作伙伴(如钉钉用户)的文件传输面临以下挑战: 1. **安全性风险**:内外网直连可能导致病毒传播、数据泄露。 2. **操作繁琐**:传统方式需频繁切…...

Linux基础开发工具的使用(apt、vim、gcc、g++、gdb、make、makefile)

Linux软件包管理器–apt Linux安装软件的方式 在Linux下安装软件的方法有以下三种: 下载到程序的源代码,自己编译出可执行程序获取deb安装包、然后使用dpkg命令安装。(不解决依赖关系)通过apt进行安装软件。 小知识点&#xf…...

最新版IDEA下载安装教程

一、下载IDEA 点击前往官网下载 或者去网盘下载 点击前往百度网盘下载 点击前往夸克网盘下载 进去后点击IDEA 然后点击Download 选择自己电脑对应的系统 点击下载 等待下载即可 二、安装IDEA 下载好后双击应用程序 点击下一步 选择好安装目录后点击下一步 勾选这两项后点击…...

MacOS 15.3 卸载系统内置软件

1、关闭系统完整性(SIP) 进入恢复模式(recovery) 如果您使用的是黑苹果或者白苹果,可以选择 重启按住CommandR 进入,如果是M系列芯片,长按开机键,进入硬盘选择界面进入。 我是MacMini M4芯片,关…...

发现问题 python3.6.13+django3.2.5 只能以asgi启动server 如何解决当前问题

在 Python 3.6.13 和 Django 3.2.5 的组合下,如果你发现只能使用 ASGI 启动 Django 服务,而不能使用 WSGI,可能的原因有几个。我们来分析一下常见的问题和解决方案。 1. 默认 ASGI 支持 从 Django 3.0 开始,Django 引入了对 ASG…...

python3+TensorFlow 2.x(六)自编码器

自动编码器 自动编码器(Autoencoder)是一种无监督学习算法,主要用于数据降维、特征学习和数据生成等任务。它由编码器和解码器组成,目标是将输入数据压缩为低维表示(编码),然后再从这个低维表示…...

Redis-AOF

AOF 前言什么是AOF执行后写入的好处避免额外的检查开销不会阻塞当前写操作命令的执行 潜在风险数据丢失阻塞下一个命令 三种写回策略AOF重写机制AOF后台重写数据副本的生成写时复制写时复制的阻塞问题 AOF重写缓冲区子进程重写期间工作内容 总结 前言 RDB方式不能提供强一致性…...

【DeepSeek】本地部署,保姆级教程

deepseek网站链接传送门:DeepSeek 在这里主要介绍DeepSeek的两种部署方法,一种是调用API,一种是本地部署。 一、API调用 1.进入网址Cherry Studio - 全能的AI助手选择立即下载 2.安装时位置建议放在其他盘,不要放c盘 3.进入软件后…...

并查集算法篇上期:并查集原理及实现

引入 那么我们在介绍我们并查集的原理之前,我们先来看一下并查集所应用的一个场景:那么现在我们有一个长度为n的数组,他们分别属于不同的集合,那么现在我们要查询数组当中某个元素和其他元素是否处于同一集合当中,或者…...

如何在WPS打开的word、excel文件中,使用AI?

1、百度搜索:Office AI官方下载 或者直接打开网址:https://www.office-ai.cn/static/introductions/officeai/smartdownload.html 打开后会直接提示开始下载中,下载完成后会让其选择下载存放位置: 选择位置,然后命名文…...

【Deepseek+Dify】wsl2+docker+Deepseek+Dify部署本地大模型知识库问题总结

wsl2dockerDeepseekDify部署本地大模型知识库问题总结 基于ollama部署本地文本模型和嵌入模型 部署教程 DeepSeekdify 本地知识库:真的太香了 问题贴:启动wsl中docker中的dify相关的容器 发现postgre服务和daemon服务一直在重启,导致前端加…...

C++初阶——简单实现vector

目录 1、前言 2、Vector.h 3、Test.cpp 1、前言 简单实现std::vector类模板。 相较于前面的string,vector要注意: 深拷贝,因为vector的元素可能是类类型,类类型元素可以通过赋值重载,自己实现深拷贝。 迭代器失效…...

1.21作业

1 unserialize3 当序列化字符串中属性个数大于实际属性个数时,不会执行反序列化 外部如果是unserialize()会调用wakeup()方法,输出“bad request”——构造url绕过wakeup 类型:public class&…...

深度集成DeepSeek大模型:WebSocket流式聊天实现

目录 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南创建应用开发后端代码 (Python/Node.js)结语 5分钟快速接入DeepSeek大模型:WebSocket实时聊天指南 创建应用 访问DeepSeek官网 前往 DeepSeek官网。如果还没有账号,需要先注册一个。…...

Jmeter连接数据库、逻辑控制器、定时器

Jmeter直连数据库 直接数据库的使用场景 直连数据库的关键配置 添加MYSQL驱动Jar包 方式一:在测试计划面板点击“浏览”按钮,将你的JDBC驱动添加进来 方式二:将MySQL驱动jar包放入到lib/ext目录下,重启JMeter 配置数据库连接信…...

『Linux笔记』进程间通信(IPC)详细介绍!

进程间通信(IPC)详细介绍! 文章目录 一. 进程间通信(IPC)详细介绍1. 共享内存(Shared Memory)2. 消息队列(Message Queues)3. 信号量(Semaphores&#xff09…...

Jmeter进阶篇(34)如何解决jmeter.save.saveservice.timestamp_format=ms报错?

问题描述 今天使用Jmeter完成压测执行,然后使用命令将jtl文件转换成html报告时,遇到了报错! 大致就是说jmeter里定义了一个jmeter.save.saveservice.timestamp_format=ms的时间格式,但是jtl文件中的时间格式不是标准的这个ms格式,导致无法正常解析。对于这个问题,有如下…...

Visual Studio 2022配置网址参考

代码格式化和清理冗余代码选项的配置: 代码样式选项和代码清理 - Visual Studio (Windows) | Microsoft Learn 调试时传递参数: 调试时传递命令行参数(C) - Visual Studio (Windows) | Microsoft Learn...

Redis中集合(Set)常见命令详解

集合(Set)常见命令详解 集合(Set)在Redis中是一种无序且不可重复的数据结构,非常适合用于存储唯一元素的集合。以下是Redis集合操作的一些常用命令及其详细说明: 添加成员 sadd key member [member ...]…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...