当前位置: 首页 > news >正文

【数据分析】2.数据分析业务全流程

业务流程方法论:3阶段6步骤

一、课程核心内容结构

1. 方法论概述

  • 目标:系统性地解决商业中的关键问题
  • 框架:分为三个阶段,每个阶段包含两个步骤
  • 适用场景:适用于数据分析师、业务经理等需要通过数据分析支持决策的从业者

二、详细步骤解析

第一阶段:构建问题

步骤1:识别核心问题

  • 关键方法:SCQ模型(情景Situation → 冲突Conflict → 问题Question)

    • 情景(Situation)

      • 描述当前业务环境和背景。
      • 案例:拼多多在快速用户增长阶段,面临用户活跃度与利润平衡的挑战。
    • 冲突(Conflict)

      • 确定主要矛盾或问题点。
      • 案例:用户增长带来获客成本增加,而活跃用户的UP值提升不足,影响整体盈利能力。
    • 问题(Question)

      • 明确需要解决的具体商业问题。
      • 输出:确定“需解决的关键商业问题”及其优先级。
  • 操作要点

    • 通过行业/企业调研确认问题的真实性。
    • 聚焦核心矛盾,如增长与利润之间的平衡。

什么是SCQ模型?

SCQ模型是一种用于结构化问题识别与定义的方法论工具,常用于商业分析、战略管理等领域。它通过清晰地描述问题的本质、核心矛盾以及具体问题点,帮助从业人士系统性地解决问题。

SCQ模型的全称为**“情景(Situation)- 冲突(Conflict)-
问题(Question)”**,是一种简单而有效的工具,尤其适用于在复杂业务环境中快速聚焦核心问题。

SCQ模型的应用步骤

  1. 明确情景(Situation)

    • 通过行业调研、数据分析等方式,了解当前业务环境和背景。
    • 确定问题发生的上下文和关键数据点。
  2. 识别冲突(Conflict)

    • 分析情景中的主要矛盾或瓶颈。
    • 理解这些冲突对整体业务目标的影响。
  3. 定义问题(Question)

    • 将复杂的问题聚焦到具体可操作的层面。
    • 明确需要解决的核心商业问题,并确定其优先级。

SCQ模型的价值

  1. 帮助聚焦核心问题

    • 在复杂的商业环境中,SCQ模型能够快速将注意力集中在关键问题上,避免被次要因素干扰。
  2. 提供结构化思考框架

    • 通过情景、冲突和问题的三步分析,从业人士可以更系统地理解问题的本质,为后续的解决方案打下基础。
  3. 促进跨部门沟通

    • SCQ模型能够帮助不同背景的团队成员快速达成共识,明确问题的核心点,避免歧义。

SCQ模型的使用场景

  1. 战略规划

    • 在制定公司或部门的战略目标时,SCQ模型可以帮助识别关键挑战和机会。
  2. 问题诊断

    • 当业务出现瓶颈或异常时,SCQ模型可以快速定位问题根源。
  3. 项目管理

    • 在项目启动阶段,使用SCQ模型明确项目的背景、核心矛盾和目标问题。
  4. 决策支持

    • 通过清晰的问题定义,为后续的数据分析和决策提供方向。

步骤2:总结历史经验

  • 分析同类问题的历史解决方案

    • 查阅公司内部或行业内的类似问题及其解决方法。
    • 案例:回顾拼多多过去在用户增长和UP值提升方面的策略调整。
  • 挖掘未解决的根源矛盾

    • 分析历史数据,识别阻碍问题解决的根本原因。
    • 可能包括:数据缺失、解决方案执行不力等。
  • 价值验证

    • 判断当前问题是否值得投入资源解决。
    • 方法:评估问题对业务的影响程度和潜在收益。
第二阶段:分析解决问题

步骤3:搭建分析模型

  • 模型类型
    • 数学公式模型:如A/B测试、回归分析等。
    • 结构化逻辑模型:因果关系图、决策树。
    • 业务流程图:可视化业务流程中的关键节点和数据流动。

A/B测试是一种将用户随机分配到两个或多个不同的版本(通常称为A组和B组)中,以观察哪个版本能带来更高转化率、点击率或其他关键业务指标的实验方法。这种方法常用于优化网站设计、广告文案、定价策略等。
用到的工具
Google Optimize:集成到Google Analytics,适合进行网页和广告的A/B测试。
Optimizely:提供直观的用户界面,支持多变量测试和动态内容交付。
Hotjar:专注于用户体验研究,通过热图和点击流分析辅助优化设计。

  • 方法论参考:BCG的假设驱动分析法(Hypothesis-Driven Analysis)

    • 核心思想
      • 基于假设进行数据分析,验证或推翻假设。
      • 案例:假设增加用户补贴能提升活跃度,通过数据验证其有效性。
  • 操作原则

    1. 优先解决核心子问题:应用80/20法则,集中资源解决对业务影响最大的问题。
      • 案例:在用户增长与UP值之间,优先优化获客成本最低的增长渠道。

80/20法则,也被称为帕累托原理(Pareto Principle)这一原则的核心思想是:在许多情况下,80%的结果通常由20%的原因造成。换句话说,资源的分布往往是不均匀的,少数关键因素会对整体结果产生决定性影响。80/20法则不是一个数学定律,而是一种观察现象,用于描述资源分配中的一种不平衡状态。在管理、经济、社会学等领域广泛应用,尤其是在优化资源配置和提升效率方面。其核心思想是:抓住关键少数(20%),实现整体效益的最大化(80%)。通过聚焦于最重要的资源和任务,可以显著提升效率和效果。

  1. 通过“问题树”拆解复杂问题层级
    • 将大问题分解为多个小问题,逐个击破。
    • 示例:用户留存率低 → 产品功能不足 → 新功能开发测试

步骤4:数据采集与处理

  • 数据来源

    1. 内部数据库

      • 结构化数据:CRM、订单系统、用户行为日志等。
    2. 外部调研/第三方报告

      • 非结构化数据:市场分析报告、竞争对手研究等。
  • 应对数据挑战的方法

    1. 数据缺失时采用替代变量(Proxy Metrics)

      • 例如,当无法直接获取用户留存率时,可以使用用户活跃天数作为替代指标。
    2. 创意性数据组合

      • 结合不同来源的数据,挖掘新的洞察。
      • 案例:将用户行为数据与宏观经济指标结合,分析经济波动对消费行为的影响。
第三阶段:结果传达与行动

步骤5:数据分析与验证

  • 分析方法论

    分析类型典型方法应用场景
    描述性分析对比分析、构成分析、趋势分析现状诊断,识别问题点
    预测性分析时间序列模型、回归分析业务预测,如销售预测
    相关性分析相关系数、因果推断挖掘变量之间的关系
  • 验证逻辑

    • 使用数据反推假设的合理性。
    • 案例:通过用户行为数据分析,验证增加补贴对活跃度提升的具体效果。

步骤6:结论传达与推动行动

  • 结论传达方式

    1. 归纳推理

      • 从大量数据现象中总结出普遍规律,适用于复杂问题的汇报。
      • 案例:通过用户行为分析,发现新功能发布后活跃度提升显著。
    2. 演绎推理

      • 从理论或假设出发,推导出预测结果。
      • 案例:基于用户留存率与购买频率的关系模型,预测未来销售额增长。
    3. 可视化表达

      • 使用信息图表、动态看板等工具简化数据展示,降低理解成本。
      • 工具推荐:Power BI、Tableau、Excel
  • 行动落地

    • 制定具体的KPI改进方案,并与利益相关方达成一致执行路径。

三、方法论亮点与学习建议

1. 方法工具融合
  • 咨询思维结合数据分析技术
    • SCQ模型和问题树等咨询工具与假设驱动分析法相结合,提升解决问题的系统性和科学性。
  • 经典管理理论在数字化场景的应用
    • 将80/20法则、因果关系图等传统管理方法应用于现代数据驱动决策。
2. 能力模型要求
  • 核心三要素

    1. 数据分析工具能力(SQL、Python等)。
    2. 商业理论体系(战略、运营方法论)。
    3. 业务沟通转化能力(将数据分析结果转化为可执行的策略建议)。
  • 进阶要求

    1. 数据治理理解:包括数据质量管理、数据隐私保护等方面的知识。
    2. 预测建模能力:掌握机器学习等高级分析技术。
    3. 战略决策支持:能够从全局视角为公司战略调整提供依据。
3. 职业发展建议
  • 初期

    • 打好数理基础,熟练掌握数据分析工具和技术。
    • 推荐学习路径:SQL、Python编程,基础统计学知识。
  • 中期

    • 深化对某一业务领域的理解,成为该领域的专家。
    • 推荐学习路径:行业研究方法论、商业智能(BI)工具应用。
  • 长期

    • 培养战略思维,能够从公司整体发展的角度思考问题。
    • 推荐学习路径:商业模式创新、企业战略管理课程。

四、延展知识点

1. 不同行业案例对比
  • 互联网行业

    • 用户增长与活跃度分析是核心问题。
    • 案例:拼多多的用户留存策略优化。
  • 金融行业

    • 风险控制与投资决策分析为主。
    • 案例:银行通过数据分析识别高风险贷款客户。
  • 零售业

    • 销售预测、库存管理等运营优化问题。
    • 案例:超市利用销售数据进行精准采购计划制定。
2. 工具链的拓展
  • 数据采集工具

    • Google Analytics:网站流量分析。https://marketingplatform.google.com/about/analytics/
    • Mixpanel:用户行为分析。 https://mixpanel.com/home/
  • 数据分析工具

    • SQL:处理结构化数据查询。
    • Python(Pandas、NumPy):高级数据分析与建模。
  • 数据可视化工具

    • Tableau:动态看板制作。
    • Power BI:企业级报表系统构建。
  • 机器学习工具

    • TensorFlow/PyTorch:深度学习模型搭建。
    • scikit-learn:传统机器学习算法应用。
3. 职业发展路径
  • 数据科学家

    • 深化技术能力,专注于复杂的数据建模和预测性分析。
  • 经营管理分析师

    • 升级到战略层面的分析,支持企业高层决策。
  • 行业研究专家

    • 在某一垂直领域深耕,成为具有深厚行业洞察的专业人才。

五、总结

通过系统地学习与应用3阶段6步骤的方法论框架,学习者可以全面提升在商业数据分析领域的核心能力。从问题定义到分析解决,再到结果传达,这一方法论不仅提供了清晰的操作指引,还强调了工具使用、业务理解与战略思维的综合培养,为个人职业发展打下坚实基础。

建议学习者在后续课程中重点关注以下内容:

  1. 数据分析工具与业务场景的实际结合应用。
  2. 互联网企业常见分析框架的实战案例研究。
  3. 职业发展路径中的能力跃迁方法论。

相关文章:

【数据分析】2.数据分析业务全流程

业务流程方法论:3阶段6步骤 一、课程核心内容结构 1. 方法论概述 目标:系统性地解决商业中的关键问题框架:分为三个阶段,每个阶段包含两个步骤适用场景:适用于数据分析师、业务经理等需要通过数据分析支持决策的从业…...

第三十章 V - W 开头的术语

文章目录 第三十章 V - W 开头的术语视图 (view)虚拟字段 (virtual field)虚拟表 (virtual table) 以 W 开头的术语观察点 (watchpoint)Web 应用程序 (web application)工作集 (working set)写入镜像日志记录 (write image journaling) 以 X 开头的术语XData 第三十章 V - W 开…...

模拟实现Java中的计时器

定时器是什么 定时器也是软件开发中的⼀个重要组件. 类似于⼀个 "闹钟". 达到⼀个设定的时间之后, 就执⾏某个指定好的代码. 前端/后端中都会用到计时器. 定时器是⼀种实际开发中⾮常常⽤的组件. ⽐如⽹络通信中, 如果对⽅ 500ms 内没有返回数据, 则断开连接尝试重…...

Eclipse2024中文汉化教程(图文版)

对应Eclipse,部分人需要中文汉化,本章教程,介绍如何对Eclipse进行汉化的具体步骤。 一、汉化前的Eclipse 默认安装Eclipse的时候,默认一般都是English的,我当前版本是使用的是2024-06版本的Eclipse。 二、汉化详细步骤 点击上方菜单选项卡,Hep——Install New Software……...

【回溯算法2】

力扣17.电话号码的字母组合 链接: link 思路 这道题容易想到用嵌套的for循环实现,但是如果输入的数字变多,嵌套的for循环也会变长,所以暴力破解的方法不合适。 可以定义一个map将数字和字母对应,这样就可以获得数字字母的映射了…...

21.《SpringBoot 异步编程@Async与CompletableFuture》

SpringBoot 异步编程 文章导读 本文系统讲解 Spring Boot 异步编程的核心技术与实践方案,涵盖从基础使用到高级优化的全链路知识。通过深入剖析 Async 注解原理、线程池配置策略、异步异常处理机制等关键技术点,结合典型业务场景的代码示例&#xff0c…...

激光雷达YDLIDAR X2 SDK安装

激光雷达YDLIDAR X2 SDK安装 陈拓 2024/12/15-2024/12/19 1. 简介 YDLIDAR X2官方网址https://ydlidar.cn/index.html‌YDLIDAR X2 YDLIDAR X2是一款高性能的激光雷达传感器,具有以下主要特点和规格参数‌: ‌测距频率‌:3000Hz ‌扫描频…...

大模型在肝硬化风险预测及临床决策中的应用研究

目录 一、引言 1.1 研究背景与意义 1.2 研究目的与创新点 1.3 研究方法与数据来源 二、肝硬化及大模型相关理论基础 2.1 肝硬化概述 2.2 大模型技术原理 2.3 大模型在医疗领域的应用现状 三、大模型预测肝硬化术前风险 3.1 术前风险因素分析 3.2 大模型预测术前风险…...

计算机毕业设计SpringBoot+Vue.js母婴商城(源码+LW文档+PPT+讲解+开题报告)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Java多线程三:补充知识

精心整理了最新的面试资料,有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 Lambda表达式 简介: 希腊字母表中排序第十一位的字母,英语名称为Lambda避免匿名内部类定义过多其实质属于函数式编程的概念 为什么要使用lam…...

计算机网络————(一)HTTP讲解

基础内容分类 从TCP/IP协议栈为依托,由上至下、从应用层到基础设施介绍协议。 1.应用层: HTTP/1.1 Websocket HTTP/2.0 2.应用层的安全基础设施 LTS/SSL 3.传输层 TCP 4.网络层及数据链路层 IP层和以太网 HTTP协议 网络页面形成基本 流程&#xff1a…...

stream流常用方法

1.reduce 在Java中,可以使用Stream API的reduce方法来计算一个整数列表的乘积。reduce方法是一种累积操作,它可以将流中的元素组合起来,返回单个结果。对于计算乘积,你需要提供一个初始值(通常是1,因为乘法…...

最新扣子(Coze)案例教程:全自动DeepSeek 写影评+批量生成 + 发布飞书,提效10 倍!手把手教学,完全免费教程

👨‍💻群里有同学是做影视赛道的博主,听说最近DeepSeek这么火,咨询能不能用DeepSeek写影评,并整理电影数据资料,自动发布到飞书文档,把每天的工作做成一个自动化的流程。 那今天斜杠君就为大家…...

数据结构:动态数组vector

vector 是 C 标准库的动态数组。 在C语言中一般初学者会使用malloc,int[n]等方式来创建静态数组,但是这种方式繁琐且容易出错。我们做算法题一般使用动态数组vector, 并且在刷题网站的题目给的输入一般也是vector类型。 示例:vect…...

【HeadFirst系列之HeadFirst设计模式】第9天之模板方法模式:从咖啡和茶到Spring框架,掌握设计模式的精髓

模板方法模式:从咖啡和茶到Spring框架,掌握设计模式的精髓 《Head First 设计模式》是一本经典的设计模式入门书籍,它以轻松幽默的方式讲解了设计模式的核心思想。其中,模板方法模式是一个非常简单但非常实用的设计模式&#xff…...

力扣hot100——排序链表(常见方法,归并排序)

解题思路: 分解(Divide):将待排序的列表递归地分成两半,直到每个子列表只包含一个元素(此时每个子列表都是有序的)。解决(Conquer):递归地对每个子列表进行排…...

使用 DeepSeek 和 ECharts 实现大屏数据可视化

引言 在当今数据驱动的时代,数据可视化成为了分析和展示数据的重要手段。大屏数据可视化不仅能够直观地展示数据,还能帮助决策者快速理解复杂信息。本文将介绍如何结合 DeepSeek(一个强大的数据处理与分析工具)和 ECharts(一个流行的数据可视化库)来实现大屏数据可视化。…...

基于springboot+vue的新生报到管理系统

一、系统架构 前端:vue | element-ui | echarts 后端:springboot | mybatis-plus | jwt 环境:jdk1.8 | mysql | maven 二、代码及数据 三、功能介绍 01. 登录 02. 首页 03. 管理员-系统管理-用户管理 04. 管理员-系统…...

【面试系列】Java开发--AI常见面试题

文章目录 1、实际工作或学习中用过哪些Ai工具1.1、AI编程1.2、AI对话聊天1.3、AI图像工具1.4、AI办公工具 2、谈谈你知道的AI领域的一些常见词汇及其含义的理解? 例如AIGC、LLM、DeepLearning分别是什么意思?2.1、AIGC(Artificial Intelligen…...

Maven 基础环境搭建与配置(二)

四、本地仓库配置,存储依赖 在 Maven 的世界里,本地仓库就像是一个 “私人储物间”,专门用来存放项目所需的各种依赖构件,如 JAR 包、WAR 包等。当我们构建项目时,Maven 会首先在本地仓库中查找所需的依赖&#xff0c…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

在Spring Boot中集成RabbitMQ的完整指南

前言 在现代微服务架构中,消息队列(Message Queue)是实现异步通信、解耦系统组件的重要工具。RabbitMQ 是一个流行的消息中间件,支持多种消息协议,具有高可靠性和可扩展性。 本博客将详细介绍如何在 Spring Boot 项目…...

spring boot使用HttpServletResponse实现sse后端流式输出消息

1.以前只是看过SSE的相关文章,没有具体实践,这次接入AI大模型使用到了流式输出,涉及到给前端流式返回,所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...

React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)

React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍,详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍&#x…...

边缘计算设备全解析:边缘盒子在各大行业的落地应用场景

随着工业物联网、AI、5G的发展,数据量呈爆炸式增长。但你有没有想过,我们生成的数据,真的都要发回云端处理吗?其实不一定。特别是在一些对响应时间、网络带宽、数据隐私要求高的行业里,边缘计算开始“火”了起来&#…...